Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A complex number 
z_(1) has a magnitude 
|z_(1)|=4 and an angle 
theta_(1)=330^(@).
Express 
z_(1) in rectangular form, as 
z_(1)=a+bi.
Express 
a+bi in exact terms.

z_(1)=◻

A complex number z1 z_{1} has a magnitude z1=4 \left|z_{1}\right|=4 and an angle θ1=330 \theta_{1}=330^{\circ} .\newlineExpress z1 z_{1} in rectangular form, as z1=a+bi z_{1}=a+b i .\newlineExpress a+bi a+b i in exact terms.\newlinez1= z_{1}=\square

Full solution

Q. A complex number z1 z_{1} has a magnitude z1=4 \left|z_{1}\right|=4 and an angle θ1=330 \theta_{1}=330^{\circ} .\newlineExpress z1 z_{1} in rectangular form, as z1=a+bi z_{1}=a+b i .\newlineExpress a+bi a+b i in exact terms.\newlinez1= z_{1}=\square
  1. Convert angle to radians: To express a complex number in rectangular form (a+bi)(a+bi) given its magnitude and angle, we use the polar to rectangular conversion formula: z=r(cos(θ)+isin(θ))z = r(\cos(\theta) + i\sin(\theta)), where rr is the magnitude and θ\theta is the angle in radians. Here, r=4r=4 and θ=330\theta=330^\circ.
  2. Calculate radians: First, convert the angle from degrees to radians because the trigonometric functions in the formula require the angle in radians. The conversion formula is radians=degrees×(π/180)\text{radians} = \text{degrees} \times (\pi/180). So, θ=330×(π/180)\theta = 330 \times (\pi/180).
  3. Substitute values into formula: Calculating the radians: θ=330×(π/180)=11π/6\theta = 330 \times (\pi/180) = 11\pi/6 radians.
  4. Calculate trigonometric functions: Now, substitute r=4r=4 and θ=11π6\theta=\frac{11\pi}{6} into the polar to rectangular conversion formula: z=4(cos(11π6)+isin(11π6))z = 4(\cos(\frac{11\pi}{6}) + i\sin(\frac{11\pi}{6})).
  5. Simplify expression: Calculate cos(11π6)\cos(\frac{11\pi}{6}) and sin(11π6)\sin(\frac{11\pi}{6}). From the unit circle, we know that cos(11π6)=32\cos(\frac{11\pi}{6}) = \frac{\sqrt{3}}{2} and sin(11π6)=12\sin(\frac{11\pi}{6}) = -\frac{1}{2}.
  6. Simplify expression: Calculate cos(11π6)\cos(\frac{11\pi}{6}) and sin(11π6)\sin(\frac{11\pi}{6}). From the unit circle, we know that cos(11π6)=32\cos(\frac{11\pi}{6}) = \frac{\sqrt{3}}{2} and sin(11π6)=12\sin(\frac{11\pi}{6}) = -\frac{1}{2}.Substitute the values of cos(11π6)\cos(\frac{11\pi}{6}) and sin(11π6)\sin(\frac{11\pi}{6}) into the formula: z=4(32+i(12))z = 4(\frac{\sqrt{3}}{2} + i*(-\frac{1}{2})).
  7. Simplify expression: Calculate cos(11π6)\cos(\frac{11\pi}{6}) and sin(11π6)\sin(\frac{11\pi}{6}). From the unit circle, we know that cos(11π6)=32\cos(\frac{11\pi}{6}) = \frac{\sqrt{3}}{2} and sin(11π6)=12\sin(\frac{11\pi}{6}) = -\frac{1}{2}.Substitute the values of cos(11π6)\cos(\frac{11\pi}{6}) and sin(11π6)\sin(\frac{11\pi}{6}) into the formula: z=4(32+i(12))z = 4(\frac{\sqrt{3}}{2} + i*(-\frac{1}{2})).Simplify the expression: z=432+4(12)i=232iz = 4*\frac{\sqrt{3}}{2} + 4*(-\frac{1}{2})i = 2\sqrt{3} - 2i.

More problems from Find the inverse of a linear function