Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A complex number 
z_(1) has a magnitude 
|z_(1)|=20 and an angle 
theta_(1)=281^(@).
Express 
z_(1) in rectangular form, as 
z_(1)=a+bi.
Round 
a and 
b to the nearest thousandth.

z_(1)=◻+◻i

A complex number z1 z_{1} has a magnitude z1=20 \left|z_{1}\right|=20 and an angle θ1=281 \theta_{1}=281^{\circ} .\newlineExpress z1 z_{1} in rectangular form, as z1=a+bi z_{1}=a+b i .\newlineRound a a and b b to the nearest thousandth.\newlinez1=+i z_{1}=\square+\square i

Full solution

Q. A complex number z1 z_{1} has a magnitude z1=20 \left|z_{1}\right|=20 and an angle θ1=281 \theta_{1}=281^{\circ} .\newlineExpress z1 z_{1} in rectangular form, as z1=a+bi z_{1}=a+b i .\newlineRound a a and b b to the nearest thousandth.\newlinez1=+i z_{1}=\square+\square i
  1. Conversion equations: To convert a complex number from polar to rectangular form, we use the equations a=zcos(θ)a = |z| \cdot \cos(\theta) and b=zsin(θ)b = |z| \cdot \sin(\theta), where z|z| is the magnitude and θ\theta is the angle in radians.
  2. Convert angle to radians: First, we need to convert the angle from degrees to radians. The angle given is 281281 degrees. To convert degrees to radians, we multiply by π/180\pi/180. \newlineθ=281×(π/180)\theta = 281 \times (\pi/180)
  3. Calculate angle in radians: Now we calculate the angle in radians. θ=281×(π/180)4.90874\theta = 281 \times (\pi/180) \approx 4.90874 radians (rounded to five decimal places for intermediate calculations)
  4. Calculate real part aa: Next, we calculate the real part aa using the cosine of the angle.\newlinea=z1cos(θ)a = |z_{1}| \cdot \cos(\theta)\newlinea=20cos(4.90874)a = 20 \cdot \cos(4.90874)
  5. Calculate value of a: Now we calculate the value of aa.a20×cos(4.90874)20×(0.85717)17.1434a \approx 20 \times \cos(4.90874) \approx 20 \times (-0.85717) \approx -17.1434 (rounded to four decimal places for intermediate calculations)
  6. Calculate imaginary part bb: Next, we calculate the imaginary part bb using the sine of the angle.b=z1sin(θ)b = |z_{1}| \cdot \sin(\theta)b=20sin(4.90874)b = 20 \cdot \sin(4.90874)
  7. Calculate value of b: Now we calculate the value of bb.b20×sin(4.90874)20×(0.51504)10.3008b \approx 20 \times \sin(4.90874) \approx 20 \times (-0.51504) \approx -10.3008 (rounded to four decimal places for intermediate calculations)
  8. Round aa and bb: Finally, we round aa and bb to the nearest thousandth.a17.143a \approx -17.143b10.301b \approx -10.301

More problems from Write equations of cosine functions using properties