Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A complex number 
z_(1) has a magnitude 
|z_(1)|=2 and an angle 
theta_(1)=49^(@).
Express 
z_(1) in rectangular form, as 
z_(1)=a+bi.
Round 
a and 
b to the nearest thousandth.

z_(1)=◻+◻i

A complex number z1 z_{1} has a magnitude z1=2 \left|z_{1}\right|=2 and an angle θ1=49 \theta_{1}=49^{\circ} .\newlineExpress z1 z_{1} in rectangular form, as z1=a+bi z_{1}=a+b i .\newlineRound a a and b b to the nearest thousandth.\newlinez1=+i z_{1}=\square+\square i

Full solution

Q. A complex number z1 z_{1} has a magnitude z1=2 \left|z_{1}\right|=2 and an angle θ1=49 \theta_{1}=49^{\circ} .\newlineExpress z1 z_{1} in rectangular form, as z1=a+bi z_{1}=a+b i .\newlineRound a a and b b to the nearest thousandth.\newlinez1=+i z_{1}=\square+\square i
  1. Convert angle to radians: To convert a complex number from polar to rectangular form, we use the equations a=zcos(θ)a = |z| \cdot \cos(\theta) and b=zsin(θ)b = |z| \cdot \sin(\theta), where z|z| is the magnitude and θ\theta is the angle in radians.
  2. Calculate cosine and sine: First, we need to convert the angle from degrees to radians. The angle given is 4949 degrees. To convert degrees to radians, we multiply by π/180\pi/180.\newlineθ1\theta_{1} in radians = 49×(π/180)49 \times (\pi/180)
  3. Find aa and bb: Now we calculate the cosine and sine of θ1\theta_{1} in radians.\newlinecos(θ1)=cos(49×(π/180))\cos(\theta_{1}) = \cos(49 \times (\pi/180))\newlinesin(θ1)=sin(49×(π/180))\sin(\theta_{1}) = \sin(49 \times (\pi/180))
  4. Calculate values of a and b: We then multiply the cosine and sine by the magnitude z1 |z_{1}| to find a and b.a=z1cos(θ1)=2cos(49(π180)) a = |z_{1}| \cdot \cos(\theta_{1}) = 2 \cdot \cos(49 \cdot (\frac{\pi}{180})) b=z1sin(θ1)=2sin(49(π180)) b = |z_{1}| \cdot \sin(\theta_{1}) = 2 \cdot \sin(49 \cdot (\frac{\pi}{180}))
  5. Determine rectangular form: Using a calculator, we find the values of aa and bb, rounding to the nearest thousandth.a2×cos(49×(π180))2×0.65611.312a \approx 2 \times \cos(49 \times (\frac{\pi}{180})) \approx 2 \times 0.6561 \approx 1.312b2×sin(49×(π180))2×0.75471.509b \approx 2 \times \sin(49 \times (\frac{\pi}{180})) \approx 2 \times 0.7547 \approx 1.509
  6. Determine rectangular form: Using a calculator, we find the values of aa and bb, rounding to the nearest thousandth.a2×cos(49×(π/180))2×0.65611.312a \approx 2 \times \cos(49 \times (\pi/180)) \approx 2 \times 0.6561 \approx 1.312b2×sin(49×(π/180))2×0.75471.509b \approx 2 \times \sin(49 \times (\pi/180)) \approx 2 \times 0.7547 \approx 1.509The rectangular form of z1z_{1} is therefore approximately z1=1.312+1.509iz_{1} = 1.312 + 1.509i.

More problems from Write equations of cosine functions using properties