Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A complex number 
z_(1) has a magnitude 
|z_(1)|=10 and an angle 
theta_(1)=210^(@).
Express 
z_(1) in rectangular form, as 
z_(1)=a+bi.
Express 
a+bi in exact terms.

z_(1)=◻

A complex number z1 z_{1} has a magnitude z1=10 \left|z_{1}\right|=10 and an angle θ1=210 \theta_{1}=210^{\circ} .\newlineExpress z1 z_{1} in rectangular form, as z1=a+bi z_{1}=a+b i .\newlineExpress a+bi a+b i in exact terms.\newlinez1= z_{1}=\square

Full solution

Q. A complex number z1 z_{1} has a magnitude z1=10 \left|z_{1}\right|=10 and an angle θ1=210 \theta_{1}=210^{\circ} .\newlineExpress z1 z_{1} in rectangular form, as z1=a+bi z_{1}=a+b i .\newlineExpress a+bi a+b i in exact terms.\newlinez1= z_{1}=\square
  1. Use formula for conversion: To convert a complex number from polar to rectangular form, use the formula z=r(cos(θ)+isin(θ))z = r(\cos(\theta) + i\sin(\theta)), where rr is the magnitude and θ\theta is the angle.
  2. Plug in values: Given z1=10\lvert z_{1} \rvert=10 and θ1=210\theta_{1}=210 degrees, plug these values into the formula.z1=10(cos(210)+isin(210))z_{1} = 10(\cos(210^{\circ}) + i\sin(210^{\circ}))
  3. Calculate cosine and sine: Calculate the cosine and sine of 210210 degrees. cos(210)=cos(30)\cos(210^{\circ}) = -\cos(30^{\circ}) and sin(210)=sin(30)\sin(210^{\circ}) = -\sin(30^{\circ}) because 210210 degrees is in the third quadrant where both sine and cosine are negative.
  4. Use exact values: Use the exact values for cos(30)\cos(30^\circ) and sin(30)\sin(30^\circ), which are 32\frac{\sqrt{3}}{2} and 12\frac{1}{2}, respectively.\newlinez1=10(32+i(12))z_{1} = 10\left(-\frac{\sqrt{3}}{2} + i\left(-\frac{1}{2}\right)\right)
  5. Multiply magnitude: Multiply the magnitude 1010 by the cosine and sine values to get the rectangular form.\newlinez1=10×3/2+10×i×1/2z_{1} = 10 \times -\sqrt{3}/2 + 10 \times i \times -1/2
  6. Simplify expression: Simplify the expression to get the final rectangular form. z1=53+i(5)z_{1} = -5\sqrt{3} + i*(-5)

More problems from Write equations of cosine functions using properties