Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the slope of the line?

3(y-1)=2x+2
Choose 1 answer:
(A) 
(2)/(3)
(B) 
(1)/(3)
(C) 
(5)/(3)
(D) 
(4)/(3)

What is the slope of the line?\newline3(y1)=2x+23(y-1)=2x+2\newlineChoose 11 answer:\newline(A) 23\frac{2}{3}\newline(B) 13\frac{1}{3}\newline(C) 53\frac{5}{3}\newline(D) 43\frac{4}{3}

Full solution

Q. What is the slope of the line?\newline3(y1)=2x+23(y-1)=2x+2\newlineChoose 11 answer:\newline(A) 23\frac{2}{3}\newline(B) 13\frac{1}{3}\newline(C) 53\frac{5}{3}\newline(D) 43\frac{4}{3}
  1. Distribute the 33: Distribute the 33 on the left side of the equation to both terms inside the parentheses.3(y1)=2x+23(y - 1) = 2x + 23y31=2x+23 \cdot y - 3 \cdot 1 = 2x + 23y3=2x+23y - 3 = 2x + 2
  2. Rearrange to slope-intercept form: Rearrange the equation to the slope-intercept form, which is y=mx+by = mx + b, where mm is the slope.\newline3y3=2x+23y - 3 = 2x + 2\newlineFirst, add 33 to both sides to isolate the y-term on one side.\newline3y3+3=2x+2+33y - 3 + 3 = 2x + 2 + 3\newline3y=2x+53y = 2x + 5
  3. Divide all terms to solve for y: Divide all terms by 33 to solve for yy. \newline3y3=(2x+5)3\frac{3y}{3} = \frac{(2x + 5)}{3}\newliney=23x+53y = \frac{2}{3}x + \frac{5}{3}
  4. Identify the slope: Identify the slope from the equation y=23x+53y = \frac{2}{3}x + \frac{5}{3}.\newlineThe coefficient of xx is the slope of the line.\newlineSo, the slope m=23m = \frac{2}{3}.