Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

V=pir^(2)h
The formula gives the volume 
V of a right circular cylinder with radius 
r and height 
h. What is the volume, in cubic centimeters, of a right circular cylinder with a radius of 2 centimeters and a height of 20 centimeters?
Choose 1 answer:
(A) 
40 pi
(B) 
80 pi
(c) 
400 pi
(D) 
800 pi

V=πr2h V=\pi r^{2} h \newlineThe formula gives the volume V V of a right circular cylinder with radius r r and height h h . What is the volume, in cubic centimeters, of a right circular cylinder with a radius of 22 centimeters and a height of 2020 centimeters?\newlineChoose 11 answer:\newline(A) 40π 40 \pi \newline(B) 80π 80 \pi \newline(C) 400π 400 \pi \newline(D) 800π 800 \pi

Full solution

Q. V=πr2h V=\pi r^{2} h \newlineThe formula gives the volume V V of a right circular cylinder with radius r r and height h h . What is the volume, in cubic centimeters, of a right circular cylinder with a radius of 22 centimeters and a height of 2020 centimeters?\newlineChoose 11 answer:\newline(A) 40π 40 \pi \newline(B) 80π 80 \pi \newline(C) 400π 400 \pi \newline(D) 800π 800 \pi
  1. Identify given values: Identify the given values from the problem.\newlineWe are given the radius r=2 r = 2 centimeters and the height h=20 h = 20 centimeters.
  2. Use volume formula: Use the formula for the volume of a right circular cylinder.\newlineThe formula is V=πr2hV = \pi r^2 h.
  3. Substitute given values: Substitute the given values into the formula. V=π(2 cm)2(20 cm)V = \pi(2 \text{ cm})^2(20 \text{ cm})
  4. Calculate volume: Calculate the volume.\newlineV=π(4 cm2)(20 cm)V = \pi(4 \text{ cm}^2)(20 \text{ cm})\newlineV=π(80 cm3)V = \pi(80 \text{ cm}^3)\newlineV=80π cm3V = 80\pi \text{ cm}^3
  5. Match with options: Match the calculated volume with the given options.\newlineThe calculated volume is 80π80\pi cubic centimeters, which corresponds to option (B).

More problems from Write equations of sine and cosine functions using properties