Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

V=pir^(2)h
The formula gives the volume 
V of a right circular cylinder with radius 
r and height 
h. What is the volume, in cubic inches, of a right circular cylinder with a radius of 3 inches and a height of 2 inches?
Choose 1 answer:
(A) 
5pi
(B) 
6pi
(c) 
12 pi
(D) 
18 pi

V=πr2h V=\pi r^{2} h \newlineThe formula gives the volume V V of a right circular cylinder with radius r r and height h h . What is the volume, in cubic inches, of a right circular cylinder with a radius of 33 inches and a height of 22 inches?\newlineChoose 11 answer:\newline(A) 5π 5 \pi \newline(B) 6π 6 \pi \newline(C) 12π 12 \pi \newline(D) 18π 18 \pi

Full solution

Q. V=πr2h V=\pi r^{2} h \newlineThe formula gives the volume V V of a right circular cylinder with radius r r and height h h . What is the volume, in cubic inches, of a right circular cylinder with a radius of 33 inches and a height of 22 inches?\newlineChoose 11 answer:\newline(A) 5π 5 \pi \newline(B) 6π 6 \pi \newline(C) 12π 12 \pi \newline(D) 18π 18 \pi
  1. Identify values for radius and height: Identify the given values for the radius rr and height hh of the cylinder.\newlineRadius r=3r = 3 inches\newlineHeight h=2h = 2 inches\newlineThe formula for the volume VV of a right circular cylinder is V=πr2hV = \pi r^2 h.
  2. Substitute values into formula: Substitute the given values into the volume formula. V=π×(3inches)2×(2inches)V = \pi \times (3 \, \text{inches})^2 \times (2 \, \text{inches})
  3. Calculate radius squared: Calculate the radius squared.\newline(3 inches)2=9 square inches(3 \text{ inches})^2 = 9 \text{ square inches}
  4. Multiply base area by height: Multiply the area of the base by the height to find the volume. V=π×9 square inches×2 inchesV = \pi \times 9 \text{ square inches} \times 2 \text{ inches}
  5. Simplify expression to find volume: Simplify the expression to find the volume.\newlineV=π×9×2V = \pi \times 9 \times 2\newlineV=18πV = 18\pi cubic inches

More problems from Write equations of sine and cosine functions using properties