Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

V=(4)/(3)pir^(3)
The volume, 
V, of a sphere of radius, 
r, can be found with the given equation. Which of the following correctly shows the sphere's radius in terms of its volume?
Choose 1 answer:
(A) 
r=(3)/(4)piV^((1)/(3))
(B) 
r=(4)/(3)piV^((1)/(3))
(c) 
r=((3V)/(4pi))^((1)/(3))
(D) 
r=((4V)/(3pi))^((1)/(3))

V=43πr3 V=\frac{4}{3} \pi r^{3} \newlineThe volume, V V , of a sphere of radius, r r , can be found with the given equation. Which of the following correctly shows the sphere's radius in terms of its volume?\newlineChoose 11 answer:\newline(A) r=34πV13 r=\frac{3}{4} \pi V^{\frac{1}{3}} \newline(B) r=43πV13 r=\frac{4}{3} \pi V^{\frac{1}{3}} \newline(c) r=(3V4π)13 r=\left(\frac{3 V}{4 \pi}\right)^{\frac{1}{3}} \newline(D) r=(4V3π)13 r=\left(\frac{4 V}{3 \pi}\right)^{\frac{1}{3}}

Full solution

Q. V=43πr3 V=\frac{4}{3} \pi r^{3} \newlineThe volume, V V , of a sphere of radius, r r , can be found with the given equation. Which of the following correctly shows the sphere's radius in terms of its volume?\newlineChoose 11 answer:\newline(A) r=34πV13 r=\frac{3}{4} \pi V^{\frac{1}{3}} \newline(B) r=43πV13 r=\frac{4}{3} \pi V^{\frac{1}{3}} \newline(c) r=(3V4π)13 r=\left(\frac{3 V}{4 \pi}\right)^{\frac{1}{3}} \newline(D) r=(4V3π)13 r=\left(\frac{4 V}{3 \pi}\right)^{\frac{1}{3}}
  1. Write volume formula for sphere: Write down the given volume formula for a sphere.\newlineThe volume of a sphere is given by the formula V=43πr3V = \frac{4}{3}\pi r^3.
  2. Solve formula for radius: Solve the formula for r r (the radius).\newlineTo find r r in terms of V V , we need to isolate r r on one side of the equation. We start by multiplying both sides by 34 \frac{3}{4} to cancel out the 43 \frac{4}{3} on the right side.\newline34V=πr3 \frac{3}{4}V = \pi r^3
  3. Divide both sides by π\pi: Divide both sides by π\pi to isolate r3r^3.\newline(34V)/π=r3\left(\frac{3}{4}V\right)/\pi = r^3
  4. Take cube root to solve for r: Take the cube root of both sides to solve for r.\newliner = \left(\frac{\left(\frac{33}{44}\right)V}{\pi}\right)^{\frac{11}{33}}
  5. Simplify expression for r: Simplify the expression for r. \newliner=(3V4π)13r = \left(\frac{3V}{4\pi}\right)^{\frac{1}{3}}
  6. Match expression with choices: Match the simplified expression for r r with the given choices.\newlineThe correct expression that matches our result is (C) r=(3V4π)13 r = \left(\frac{3V}{4\pi}\right)^{\frac{1}{3}} .

More problems from Compare linear and exponential growth