Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The moon has a volume of about 
(4)/(3)pi(12^(3))^(3) cubic kilometers. The earth has a volume of about 
(4)/(3)pi(16*20^(2))^(3) cubic kilometers. The radius of the earth is 
(u)/( 27) times as long as the radius of the moon. What is the value of 
u ?

The moon has a volume of about 43π(123)3 \frac{4}{3} \pi\left(12^{3}\right)^{3} cubic kilometers. The earth has a volume of about 43π(16202)3 \frac{4}{3} \pi\left(16 \cdot 20^{2}\right)^{3} cubic kilometers. The radius of the earth is u27 \frac{u}{27} times as long as the radius of the moon. What is the value of u u ?

Full solution

Q. The moon has a volume of about 43π(123)3 \frac{4}{3} \pi\left(12^{3}\right)^{3} cubic kilometers. The earth has a volume of about 43π(16202)3 \frac{4}{3} \pi\left(16 \cdot 20^{2}\right)^{3} cubic kilometers. The radius of the earth is u27 \frac{u}{27} times as long as the radius of the moon. What is the value of u u ?
  1. Denote Radii: Let's denote the radius of the moon as rmoonr_{\text{moon}} and the radius of the earth as rearthr_{\text{earth}}. According to the given information, rearth=(u27)×rmoonr_{\text{earth}} = (\frac{u}{27}) \times r_{\text{moon}}. We are given the volumes of the moon and the earth in terms of their radii. We need to find the value of uu.
  2. Volume Calculations of Moon: The volume of a sphere is given by the formula V=43πr3V = \frac{4}{3}\pi r^3. The volume of the moon is given as 43π(123)3\frac{4}{3}\pi(12^3)^3 cubic kilometers. Let's simplify this expression.\newlineVmoon=43π(123)3=43π(123×123×123)=43π(129)V_{\text{moon}} = \frac{4}{3}\pi(12^3)^3 = \frac{4}{3}\pi(12^3 \times 12^3 \times 12^3) = \frac{4}{3}\pi(12^9)
  3. Volume Calculations of Earth: Similarly, the volume of the earth is given as 43π(16×202)3\frac{4}{3}\pi(16\times20^2)^3 cubic kilometers. Let's simplify this expression.\newlineVearth=43π(163×206)V_{\text{earth}} = \frac{4}{3}\pi(16^3 \times 20^6)
  4. Volume Equations: We know that the volume of the earth is related to the volume of the moon by the cube of their radius ratio. \newlineWe know that the ratio of volumes is equal to the cube of the ratio of radii\newlineSo, we can set up the following equation:\newlineVearthVmoon=(rearthrmoon)3\frac{V_{\text{earth}}}{V_{\text{moon}}} = (\frac{r_{\text{earth}}}{r_{\text{moon}}})^3
  5. Substituting values: Substituting the values into the equation.\newline43π(163×206)43π(129)=(u27×rmoonrmoon)3\frac{\frac{4}{3}\pi(16^3 \times 20^6)}{\frac{4}{3}\pi(12^9)} = (\frac{\frac{u}{27} \times r_{\text{moon}}}{r_{\text{moon}}})^3\newlineLet's simplify this equation, we get: \newline163×206129=(u27)3\frac{16^3 \times 20^6}{12^9} = (\frac{u}{27})^3\newline
  6. Cancel out cube on right side of the equation : To cancel out the cube, take cube root on both sides of the equation.\newline(163×206129)13=((u27)3)13(\frac{16^3 \times 20^6}{12^9})^\frac{1}{3} = ((\frac{u}{27})^3)^\frac{1}{3}\newline1633×20631293=u27\frac{16^\frac{3}{3} \times 20^\frac{6}{3}}{12^\frac{9}{3}} = \frac{u}{27}\newline16×202123=u27\frac{16 \times 20^2}{12^3} = \frac{u}{27}\newline
  7. Isolate uu: To isolate uu, multiply by 2727 on both sides of the equation.\newline(16×202123)×27=(u27)×27(\frac{16 \times 20^2}{12^3}) \times 27 = (\frac{u}{27}) \times 27\newline16×202×27123=u\frac{16 \times 20^2 \times 27}{12^3} = u
  8. Solve for uu: First, simplify the numerator and then, simplify the denominator.\newline16×202×27=17280016 \times 20^2 \times 27 = 172800\newline123=172812^3 = 1728\newlineNow, divide the result of numerator by denominator.\newlineCalculation: u=1728001728u = \frac{172800}{1728}\newlineu=100u = 100

More problems from Scale drawings: word problems