Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
p=3x+4.
Which equation is equivalent to 
(3x+4)^(2)-36=15 x+20 in terms of 
p ?
Choose 1 answer:
(A) 
p^(2)+5p-56=0
(B) 
p^(2)-5p-36=0
(C) 
p^(2)+5p-36=0
(D) 
p^(2)-5p-56=0

Let p=3x+4 p=3x+4 . Which equation is equivalent to (3x+4)236=15x+20 (3x+4)^{2}-36=15x+20 in terms of p p ? Choose 11 answer:\newline(A) p2+5p56=0 p^{2}+5p-56=0 \newline(B) p25p36=0 p^{2}-5p-36=0 \newline(C) p2+5p36=0 p^{2}+5p-36=0 \newline(D) p25p56=0 p^{2}-5p-56=0

Full solution

Q. Let p=3x+4 p=3x+4 . Which equation is equivalent to (3x+4)236=15x+20 (3x+4)^{2}-36=15x+20 in terms of p p ? Choose 11 answer:\newline(A) p2+5p56=0 p^{2}+5p-56=0 \newline(B) p25p36=0 p^{2}-5p-36=0 \newline(C) p2+5p36=0 p^{2}+5p-36=0 \newline(D) p25p56=0 p^{2}-5p-56=0
  1. Given equation: We are given that p=3x+4 p = 3x + 4 . We need to express the equation (3x+4)236=15x+20 (3x+4)^2 - 36 = 15x + 20 in terms of p p .\newlineFirst, let's expand (3x+4)2 (3x+4)^2 .\newline(3x+4)2=(3x+4)(3x+4)=9x2+12x+12x+16=9x2+24x+16 (3x+4)^2 = (3x+4)(3x+4) = 9x^2 + 12x + 12x + 16 = 9x^2 + 24x + 16
  2. Expanding (3x+4)2(3x+4)^2: Now, let's substitute the expanded form of (3x+4)2(3x+4)^2 into the given equation.\newline9x2+24x+1636=15x+209x^2 + 24x + 16 - 36 = 15x + 20
  3. Substituting into given equation: Next, we simplify the left side of the equation by subtracting 3636 from both sides.\newline9x2+24x+1636=15x+209x^2 + 24x + 16 - 36 = 15x + 20\newline9x2+24x20=15x+209x^2 + 24x - 20 = 15x + 20
  4. Simplifying left side: Now, we subtract 15x15x from both sides to get the xx terms on one side.\newline9x2+24x2015x=15x+2015x9x^2 + 24x - 20 - 15x = 15x + 20 - 15x\newline9x2+9x20=209x^2 + 9x - 20 = 20
  5. Isolating x terms: Next, we subtract 2020 from both sides to isolate the terms with xx on one side.\newline9x2+9x2020=20209x^2 + 9x - 20 - 20 = 20 - 20\newline9x2+9x40=09x^2 + 9x - 40 = 0
  6. Subtracting 2020: Now, we need to express this equation in terms of pp. Since p=3x+4p = 3x + 4, we can rewrite 9x9x as 3(3x)3(3x) and 9x29x^2 as \ (\(3x)^22 \\).(3x)2+3(3x)40=0 (3x)^2 + 3(3x) - 40 = 0
  7. Expressing in terms of p p : Substitute p p for 3x+4 3x + 4 in the equation.\newline(p4)2+3(p4)40=0 (p - 4)^2 + 3(p - 4) - 40 = 0
  8. Substituting p p for 3x+4 3x + 4 : Expand (p4)2 (p - 4)^2 and simplify the equation.\newline(p4)(p4)+3p1240=0 (p - 4)(p - 4) + 3p - 12 - 40 = 0 \newlinep24p4p+16+3p1240=0 p^2 - 4p - 4p + 16 + 3p - 12 - 40 = 0 \newlinep25p+161240=0 p^2 - 5p + 16 - 12 - 40 = 0
  9. Expanding (p4)2(p - 4)^2: Combine like terms to simplify the equation further.\newlinep28p+1652=0p^2 - 8p + 16 - 52 = 0\newlinep28p36=0p^2 - 8p - 36 = 0

More problems from Solve a quadratic equation by factoring