Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
h(x)=x^(3)-4x+3, what is the value of 
h(h(2)) ?

If h(x)=x34x+3 h(x)=x^{3}-4 x+3 , what is the value of h(h(2)) h(h(2)) ?

Full solution

Q. If h(x)=x34x+3 h(x)=x^{3}-4 x+3 , what is the value of h(h(2)) h(h(2)) ?
  1. Find h(2)h(2): First, we need to find the value of h(2)h(2) by substituting xx with 22 in the function h(x)h(x).
    h(x)=x34x+3h(x) = x^3 - 4x + 3
    h(2)=(2)34(2)+3h(2) = (2)^3 - 4(2) + 3
    Calculate the value of h(2)h(2).
    h(2)=88+3h(2) = 8 - 8 + 3
    h(2)=3h(2) = 3
  2. Calculate h(2)h(2): Now that we have h(2)=3h(2) = 3, we need to find h(h(2))h(h(2)) which is h(3)h(3).\newlineSubstitute xx with 33 in the function h(x)h(x).\newlineh(x)=x34x+3h(x) = x^3 - 4x + 3\newlineh(3)=(3)34(3)+3h(3) = (3)^3 - 4(3) + 3\newlineCalculate the value of h(3)h(3).\newlineh(2)=3h(2) = 300\newlineh(2)=3h(2) = 311
  3. Find h(h(2))h(h(2)): The value of h(h(2))h(h(2)) is the same as the value of h(3)h(3) which we have found in the previous step.\newlineTherefore, h(h(2))=18h(h(2)) = 18.

More problems from Evaluate exponential functions