Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If

f(x)=(2x-1)(x-6)(3x+1)", "
what is the value of 
f((1)/(2)) ?

If f(x)=(2x1)(x6)(3x+1)f(x)=(2 x-1)(x-6)(3 x+1), what is the value of f(12) f\left(\frac{1}{2}\right) ?

Full solution

Q. If f(x)=(2x1)(x6)(3x+1)f(x)=(2 x-1)(x-6)(3 x+1), what is the value of f(12) f\left(\frac{1}{2}\right) ?
  1. Given Function: We are given the function f(x)=(2x1)(x6)(3x+1)f(x)=(2x-1)(x-6)(3x+1) and we need to find the value of f(12)f\left(\frac{1}{2}\right). To do this, we will substitute xx with 12\frac{1}{2} in the function and simplify.
  2. Substitute in First Term: First, substitute (12)(\frac{1}{2}) for xx in the first term (2x1)(2x-1): \newline=2(12)1= 2 \cdot (\frac{1}{2}) - 1 \newline=11= 1 - 1 \newline=0= 0
  3. Substitute in Second Term: Next, substitute 12\frac{1}{2} for xx in the second term (x6)(x-6): \newline=126= \frac{1}{2} - 6 \newline=5.5= -5.5 or 112-\frac{11}{2}
  4. Substitute in Third Term: Then, substitute 12\frac{1}{2} for xx in the third term (3x+1)(3x+1): \newline=312+1= 3\cdot\frac{1}{2} + 1 \newline=1.5+1= 1.5 + 1 \newline=2.5= 2.5 or 52\frac{5}{2}
  5. Multiply Results: Now, multiply the results of the three terms together to find f(12)f\left(\frac{1}{2}\right): \newline f(x)=(2x1)(x6)(3x+1)f(x)=(2x-1)(x-6)(3x+1) \newlinef(12)=0×(112)×(52)f\left(\frac{1}{2}\right) = 0 \times \left(-\frac{11}{2}\right) \times \left(\frac{5}{2}\right) \newline f(12)=0f\left(\frac{1}{2}\right) = 0