Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

G(x)=(x-a)(x-b)(x-c)
A polynomial function 
G has zeros of 
5,-(3)/(2), and 
(1)/(2). If polynomial 
G is defined for constants 
a,b, and 
c, then what is the value of 
a+b+c ?

G(x)=(xa)(xb)(xc) G(x)=(x-a)(x-b)(x-c) \newlineA polynomial function G G has zeros of 5,32 5,-\frac{3}{2} , and 12 \frac{1}{2} . If polynomial G G is defined for constants a,b a, b , and c c , then what is the value of a+b+c a+b+c ?

Full solution

Q. G(x)=(xa)(xb)(xc) G(x)=(x-a)(x-b)(x-c) \newlineA polynomial function G G has zeros of 5,32 5,-\frac{3}{2} , and 12 \frac{1}{2} . If polynomial G G is defined for constants a,b a, b , and c c , then what is the value of a+b+c a+b+c ?
  1. Identify Zeros: Identify the zeros of the polynomial function G(x)G(x).\newlineThe zeros of the polynomial function are given as 55, (32)-\left(\frac{3}{2}\right), and (12)\left(\frac{1}{2}\right). These zeros correspond to the values of aa, bb, and cc.
  2. Relate to Constants: Relate the zeros to the constants aa, bb, and cc.\newlineSince the zeros of the polynomial are the values for which G(x)=0G(x) = 0, we can say that a=5a = 5, b=(32)b = -\left(\frac{3}{2}\right), and c=(12)c = \left(\frac{1}{2}\right).
  3. Calculate Sum: Calculate the sum of the constants aa, bb, and cc.\newlineTo find the value of a+b+ca+b+c, we simply add the constants together: a+b+c=5+((32))+(12)a + b + c = 5 + (-(\frac{3}{2})) + (\frac{1}{2}).
  4. Perform Addition: Perform the addition to find the sum. a+b+c=5(32)+(12)=51.5+0.5=51=4a + b + c = 5 - \left(\frac{3}{2}\right) + \left(\frac{1}{2}\right) = 5 - 1.5 + 0.5 = 5 - 1 = 4.

More problems from Write equations of cosine functions using properties