Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For a given input value 
v, the function 
f outputs a value 
u to satisfy the following equation.

u-5=-4(v-1)
Write a formula for 
f(v) in terms of 
v.

f(v)=

For a given input value vv, the function ff outputs a value uu to satisfy the following equation.\newlineu5=4(v1)u-5=-4(v-1)\newlineWrite a formula for f(v)f(v) in terms of vv.\newlinef(v)=f(v)=

Full solution

Q. For a given input value vv, the function ff outputs a value uu to satisfy the following equation.\newlineu5=4(v1)u-5=-4(v-1)\newlineWrite a formula for f(v)f(v) in terms of vv.\newlinef(v)=f(v)=
  1. Isolate u in the equation: Isolate u in the equation u5=4(v1)u-5=-4(v-1).\newlineTo do this, we will add 55 to both sides of the equation to get uu on one side.\newlineu5+5=4(v1)+5u-5+5 = -4(v-1)+5\newlineNow simplify the equation.\newlineu=4(v1)+5u = -4(v-1) + 5
  2. Distribute the 4-4 across the parentheses: Distribute the 4-4 across the parentheses in 4(v1)-4(v-1).\newline4×v-4 \times v gives us 4v-4v, and 4×1-4 \times -1 gives us +4+4.\newlineu=4v+4+5u = -4v + 4 + 5
  3. Combine like terms to simplify the equation: Combine like terms 44 and 55 to simplify the equation further.\newlineu=4v+4+5u = -4v + 4 + 5\newlineu=4v+9u = -4v + 9
  4. Write the function f(v) in terms of v: Write the function f(v) in terms of v.\newlineSince u is the output of the function f for the input v, we can write u as f(v).\newlinef(v) = 4-4v + 99

More problems from Find the inverse of a linear function