Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For a given input value 
r, the function 
h outputs a value 
q to satisfy the following equation.

q-10=6(r+1)
Write a formula for 
h(r) in terms of 
r.

h(r)=

For a given input value r r , the function h h outputs a value q q to satisfy the following equation.\newlineq10=6(r+1) q-10=6(r+1) \newlineWrite a formula for h(r) h(r) in terms of r r .\newlineh(r)= h(r)=

Full solution

Q. For a given input value r r , the function h h outputs a value q q to satisfy the following equation.\newlineq10=6(r+1) q-10=6(r+1) \newlineWrite a formula for h(r) h(r) in terms of r r .\newlineh(r)= h(r)=
  1. Isolate qq in the equation: To find the formula for h(r)h(r), we need to express qq in terms of rr. We start by isolating qq on one side of the equation q10=6(r+1)q-10=6(r+1).
  2. Distribute the 66 through the parentheses: Add 1010 to both sides of the equation to isolate qq.
    q10+10=6(r+1)+10q-10+10 = 6(r+1)+10
    This simplifies to:
    q=6(r+1)+10q = 6(r+1) + 10
  3. Combine like terms: Now distribute the 66 through the parentheses.q=6r+6+10q = 6r + 6 + 10
  4. Write the function h(r)h(r): Combine like terms (66 and 1010) to simplify the equation further.q=6r+16q = 6r + 16
  5. Write the function h(r): Combine like terms (66 and 1010) to simplify the equation further.\newlineq = 66r + 1616Since h outputs q for a given input r, we can write the function h(r) as:\newlineh(r) = 66r + 1616

More problems from Find the inverse of a linear function