Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For a given input value 
n, the function 
g outputs a value 
m to satisfy the following equation.

3m-5n=11
Write a formula for 
g(n) in terms of 
n.

g(n)=◻

For a given input value n n , the function g g outputs a value m m to satisfy the following equation.\newline3m5n=11 3m-5n=11 \newlineWrite a formula for g(n) g(n) in terms of n n .\newlineg(n)= g(n)=\square

Full solution

Q. For a given input value n n , the function g g outputs a value m m to satisfy the following equation.\newline3m5n=11 3m-5n=11 \newlineWrite a formula for g(n) g(n) in terms of n n .\newlineg(n)= g(n)=\square
  1. Isolate m in equation: Isolate m in the equation 3m5n=113m - 5n = 11.\newlineTo do this, we will add 5n5n to both sides of the equation to get 3m3m on one side.\newline3m5n+5n=11+5n3m - 5n + 5n = 11 + 5n\newlineThis simplifies to:\newline3m=11+5n3m = 11 + 5n
  2. Divide both sides by 33: Divide both sides of the equation by 33 to solve for m.\newline3m3=11+5n3\frac{3m}{3} = \frac{11 + 5n}{3}\newlineThis simplifies to:\newlinem=11+5n3m = \frac{11 + 5n}{3}
  3. Write function g(n) g(n) in terms of n n : Write the function g(n) g(n) in terms of n n using the expression for m m .\newlineSince m m is the output of the function g g for the input n n , we can write:\newlineg(n)=11+5n3 g(n) = \frac{11 + 5n}{3}

More problems from Find the inverse of a linear function