Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the zeros of the function. Enter the solutions from least to greatest.

f(x)=(x-4)^(2)-16
lesser 
x=
greater 
x=

Find the zeros of the function. Enter the solutions from least to greatest.\newlinef(x)=(x4)216 f(x)=(x-4)^{2}-16 \newlinelesser x= x= \newlinegreater x= x=

Full solution

Q. Find the zeros of the function. Enter the solutions from least to greatest.\newlinef(x)=(x4)216 f(x)=(x-4)^{2}-16 \newlinelesser x= x= \newlinegreater x= x=
  1. Find Zeros of the Function: Set the function equal to zero to find its zeros.\newlinef(x)=(x4)216=0f(x) = (x-4)^2 - 16 = 0
  2. Isolate the Squared Term: Add 1616 to both sides of the equation to isolate the squared term.\newline(x4)2=16(x-4)^2 = 16
  3. Solve for x: Take the square root of both sides of the equation to solve for x.\newline(x4)2=±16\sqrt{(x-4)^2} = \pm\sqrt{16}\newlinex4=±4x - 4 = \pm 4
  4. Determine the Solutions: Solve for x by adding 44 to both sides of each equation.\newlineFor the positive root:\newlinex4+4=4+4x - 4 + 4 = 4 + 4\newlinex=8x = 8\newlineFor the negative root:\newlinex4+4=4+4x - 4 + 4 = -4 + 4\newlinex=0x = 0
  5. List the Solutions: List the solutions from least to greatest.\newlinelesser x=0x = 0\newlinegreater x=8x = 8

More problems from Evaluate exponential functions