Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the zeros of the function. Enter the solutions from least to greatest.

f(x)=(x-8)^(2)-9
lesser 
x=
greater 
x=

Find the zeros of the function. Enter the solutions from least to greatest.\newlinef(x)=(x8)29 f(x)=(x-8)^{2}-9 \newlinelesser x= x= \newlinegreater x= x=

Full solution

Q. Find the zeros of the function. Enter the solutions from least to greatest.\newlinef(x)=(x8)29 f(x)=(x-8)^{2}-9 \newlinelesser x= x= \newlinegreater x= x=
  1. Find Zeros: Set the function equal to zero to find its zeros. f(x)=(x8)29=0f(x) = (x-8)^2 - 9 = 0
  2. Isolate Squared Term: Add 99 to both sides of the equation to isolate the squared term.\newline(x8)2=9(x-8)^2 = 9
  3. Take Square Root: Take the square root of both sides of the equation to solve for xx.(x8)2=±9\sqrt{(x-8)^2} = \pm\sqrt{9}x8=±3x - 8 = \pm3
  4. Solve for x: Solve for x by adding 88 to both sides of each equation.\newlineFor the positive root:\newlinex8+8=3+8x - 8 + 8 = 3 + 8\newlinex=11x = 11\newlineFor the negative root:\newlinex8+8=3+8x - 8 + 8 = -3 + 8\newlinex=5x = 5

More problems from Evaluate exponential functions