Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find one value of 
x that is a solution to the equation:

(3x+7)^(2)=-6x-14

x=

Find one value of xx that is a solution to the equation:\newline(3x+7)2=6x14(3x+7)^{2}=-6x-14\newlinex=x=

Full solution

Q. Find one value of xx that is a solution to the equation:\newline(3x+7)2=6x14(3x+7)^{2}=-6x-14\newlinex=x=
  1. Write Equation: Write down the given equation.\newline(3x+7)2=6x14(3x + 7)^2 = -6x - 14
  2. Expand Equation: Expand the left side of the equation.\newline(3x+7)(3x+7)=6x14(3x + 7)(3x + 7) = -6x - 14\newline9x2+21x+21x+49=6x149x^2 + 21x + 21x + 49 = -6x - 14\newlineCombine like terms.\newline9x2+42x+49=6x149x^2 + 42x + 49 = -6x - 14
  3. Combine Like Terms: Move all terms to one side to set the equation to zero.\newline9x2+42x+49+6x+14=09x^2 + 42x + 49 + 6x + 14 = 0\newlineCombine like terms.\newline9x2+48x+63=09x^2 + 48x + 63 = 0
  4. Move Terms to One Side: Factor the quadratic equation.\newlineWe need to find two numbers that multiply to (9×63)(9 \times 63) and add up to 4848.\newlineThe numbers 99 and 6363 already satisfy this condition.\newline(3x+9)(3x+7)=0(3x + 9)(3x + 7) = 0
  5. Factor Quadratic Equation: Solve for x by setting each factor equal to zero.\newline3x+9=03x + 9 = 0 or 3x+7=03x + 7 = 0\newlineFor the first factor:\newline3x=93x = -9\newlinex=3x = -3\newlineFor the second factor:\newline3x=73x = -7\newlinex=73x = -\frac{7}{3}
  6. Solve for x: Check the solutions in the original equation.\newlineFor x=3x = -3:\newline(3(3)+7)2=6(3)14(3(-3) + 7)^2 = -6(-3) - 14\newline(9+7)2=1814(-9 + 7)^2 = 18 - 14\newline(2)2=4(-2)^2 = 4\newline4=44 = 4 (True)\newlineFor x=73x = -\frac{7}{3}:\newline(3(73)+7)2=6(73)14(3(-\frac{7}{3}) + 7)^2 = -6(-\frac{7}{3}) - 14\newline(7+7)2=1414(-7 + 7)^2 = 14 - 14\newline02=00^2 = 0\newline0=00 = 0 (True)\newlineBoth solutions are valid.

More problems from Solve a quadratic equation by factoring