Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

F=(9)/(5)(K-273)+32
In order to convert a temperature in Kelvin, 
K, into a temperature in degrees Fahrenheit, 
F, the given equation can be used. Which of the following equations correctly expresses the temperature in Kelvin in terms of the temperature in degrees Fahrenheit?
Choose 1 answer:
(A) 
K=(9)/(5)(F-273)+32
(B) 
K=((5)/(9)F-32)+27 !
(C) 
K=(5)/(9)(F-32)+273
(D) 
K=(5(F-32)+273)/(9)

F=95(K273)+32 F=\frac{9}{5}(K-273)+32 \newlineIn order to convert a temperature in Kelvin, K K , into a temperature in degrees Fahrenheit, F F , the given equation can be used. Which of the following equations correctly expresses the temperature in Kelvin in terms of the temperature in degrees Fahrenheit?\newlineChoose 11 answer:\newline(A) K=95(F273)+32 K=\frac{9}{5}(F-273)+32 \newline(B) K=(59F32)+27 K=\left(\frac{5}{9} F-32\right)+27 :\newlineC) K=59(F32)+273 K=\frac{5}{9}(F-32)+273 \newline(D) K=5(F32)+2739 K=\frac{5(F-32)+273}{9}

Full solution

Q. F=95(K273)+32 F=\frac{9}{5}(K-273)+32 \newlineIn order to convert a temperature in Kelvin, K K , into a temperature in degrees Fahrenheit, F F , the given equation can be used. Which of the following equations correctly expresses the temperature in Kelvin in terms of the temperature in degrees Fahrenheit?\newlineChoose 11 answer:\newline(A) K=95(F273)+32 K=\frac{9}{5}(F-273)+32 \newline(B) K=(59F32)+27 K=\left(\frac{5}{9} F-32\right)+27 :\newlineC) K=59(F32)+273 K=\frac{5}{9}(F-32)+273 \newline(D) K=5(F32)+2739 K=\frac{5(F-32)+273}{9}
  1. Given equation: We are given the equation to convert Kelvin to Fahrenheit: F=(95)(K273)+32F = \left(\frac{9}{5}\right)(K - 273) + 32. We need to solve for KK in terms of FF.
  2. Isolating K: First, subtract 3232 from both sides of the equation to isolate the term with KK on one side: F32=(95)(K273)F - 32 = \left(\frac{9}{5}\right)(K - 273).
  3. Solving for K273 K - 273 : Next, multiply both sides of the equation by 59 \frac{5}{9} to solve for K273 K - 273 : (59)(F32)=K273 \left(\frac{5}{9}\right)(F - 32) = K - 273 .
  4. Solving for K: Finally, add 273273 to both sides of the equation to solve for K: K=(59)(F32)+273K = \left(\frac{5}{9}\right)(F - 32) + 273.

More problems from Compare linear and exponential growth