Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand.
Your answer should be a polynomial in standard form.

(6f-7)(8f-9)=

Expand.\newlineYour answer should be a polynomial in standard form.\newline(6f7)(8f9)=(6f-7)(8f-9)=

Full solution

Q. Expand.\newlineYour answer should be a polynomial in standard form.\newline(6f7)(8f9)=(6f-7)(8f-9)=
  1. Apply distributive property: Apply the distributive property (also known as the FOIL method) to expand the expression (6f7)(8f9)(6f-7)(8f-9).\newlineFirst, multiply the first terms in each binomial: 6f×8f6f \times 8f.
  2. Multiply first terms: Multiply the outer terms in each binomial: 6f×96f \times -9.
  3. Multiply outer terms: Multiply the inner terms in each binomial: 7×8f-7 \times 8f.
  4. Multiply inner terms: Multiply the last terms in each binomial: 7×9-7 \times -9.
  5. Multiply last terms: Combine the results from steps 11 to 44 to get the expanded form.\newlineFirst terms: 6f×8f=48f26f \times 8f = 48f^2.\newlineOuter terms: 6f×9=54f6f \times -9 = -54f.\newlineInner terms: 7×8f=56f-7 \times 8f = -56f.\newlineLast terms: 7×9=63-7 \times -9 = 63.
  6. Combine results: Add all the terms together and combine like terms to get the polynomial in standard form. 48f254f56f+6348f^2 - 54f - 56f + 63.
  7. Combine like terms: Combine the like terms 54f-54f and 56f-56f to get 110f-110f.\newline48f2110f+6348f^2 - 110f + 63.

More problems from Multiply two binomials