Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

8*5^((-t)/(9))=346
Which of the following is the solution of the equation?
Choose 1 answer:
(A) 
t=9log_(5)(43.25)
(B) 
t=-9log_(40)(346)
(c) 
t=-9log_(5)(43.25)
(D) 
t=9log_(346)(40)

85t9=346 8 \cdot 5^{\frac{-t}{9}}=346 \newlineWhich of the following is the solution of the equation?\newlineChoose 11 answer:\newline(A) t=9log5(43.25) t=9 \log _{5}(43.25) \newline(B) t=9log40(346) t=-9 \log _{40}(346) \newline(C) t=9log5(43.25) t=-9 \log _{5}(43.25) \newline(D) t=9log346(40) t=9 \log _{346}(40)

Full solution

Q. 85t9=346 8 \cdot 5^{\frac{-t}{9}}=346 \newlineWhich of the following is the solution of the equation?\newlineChoose 11 answer:\newline(A) t=9log5(43.25) t=9 \log _{5}(43.25) \newline(B) t=9log40(346) t=-9 \log _{40}(346) \newline(C) t=9log5(43.25) t=-9 \log _{5}(43.25) \newline(D) t=9log346(40) t=9 \log _{346}(40)
  1. Isolate exponential part: First, let's isolate the exponential part by dividing both sides by 88.\newline8×5(t)/(9)=3468 \times 5^{(-t)/(9)} = 346\newline5(t)/(9)=346/85^{(-t)/(9)} = 346 / 8\newline5(t)/(9)=43.255^{(-t)/(9)} = 43.25
  2. Take logarithm with base 55: Now, we'll take the logarithm with base 55 of both sides to solve for tt.log5(5(t9))=log5(43.25)\log_5(5^{(-\frac{t}{9})}) = \log_5(43.25)
  3. Apply logarithm property: Using the property of logarithms, the exponent on the left side comes down in front. (t9)log5(5)=log5(43.25)\left(\frac{-t}{9}\right) \cdot \log_5(5) = \log_5(43.25)
  4. Simplify left side: Since log5(5)\log_5(5) is 11, we can simplify the left side.\newlinet9=log5(43.25)-\frac{t}{9} = \log_5(43.25)
  5. Multiply both sides: Now, we multiply both sides by 9-9 to solve for tt.t=9×log5(43.25)t = -9 \times \log_5(43.25)