Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

7y^(2)=50 x-150

y=(3-x)/(2)
If 
(x_(1),y_(1)) and 
(x_(2),y_(2)) are distinct solutions to the system of equations shown, what is the product of the 
y_(1) and 
y_(2) ?

7y2=50x150 7 y^{2}=50 x-150 \newliney=3x2 y=\frac{3-x}{2} \newlineIf (x1,y1) \left(x_{1}, y_{1}\right) and (x2,y2) \left(x_{2}, y_{2}\right) are distinct solutions to the system of equations shown, what is the product of the y1 y_{1} and y2 y_{2} ?

Full solution

Q. 7y2=50x150 7 y^{2}=50 x-150 \newliney=3x2 y=\frac{3-x}{2} \newlineIf (x1,y1) \left(x_{1}, y_{1}\right) and (x2,y2) \left(x_{2}, y_{2}\right) are distinct solutions to the system of equations shown, what is the product of the y1 y_{1} and y2 y_{2} ?
  1. Equations: We have two equations:\newline11) 7y2=50x1507y^{2} = 50x - 150\newline22) y=3x2y = \frac{3 - x}{2}\newlineTo find the solutions to the system, we can substitute the second equation into the first one to eliminate yy and solve for xx.
  2. Substitution: Substitute yy from the second equation into the first equation: 7(3x2)2=50x1507\left(\frac{3 - x}{2}\right)^{2} = 50x - 150
  3. Expand and Simplify: Expand and simplify the equation:\newline7(96x+x2)4=50x150\frac{7(9 - 6x + x^2)}{4} = 50x - 150\newlineMultiply both sides by 44 to get rid of the denominator:\newline7(96x+x2)=200x6007(9 - 6x + x^2) = 200x - 600
  4. Rearrange the Equation: Distribute the 77 on the left side of the equation: 6342x+7x2=200x60063 - 42x + 7x^2 = 200x - 600
  5. Quadratic Formula: Rearrange the equation to form a quadratic equation:\newline7x242x200x+63+600=07x^2 - 42x - 200x + 63 + 600 = 0\newline7x2242x+663=07x^2 - 242x + 663 = 0
  6. Quadratic Formula to find roots: We need to solve the quadratic equation for xx. However, the quadratic does not factor easily, so we will use the quadratic formula:\newlinex=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\newlinewhere a=7a = 7, b=242b = -242, and c=663c = 663.
  7. Calculate Discriminant: Calculate the discriminant b24acb^2 - 4ac:\newlineDiscriminant = (242)24(7)(663)(-242)^2 - 4(7)(663)\newlineDiscriminant = 585641856458564 - 18564\newlineDiscriminant = 4000040000
  8. Calculate the values of x1x_{1} and x2x_{2} Calculate Product of y: Since the discriminant is positive, we have two distinct real solutions for xx. Now we calculate the solutions using the quadratic formula:\newlinex1,2=242±4000014x_{1,2} = \frac{242 \pm \sqrt{40000}}{14} \newlinex1=242+4000014=242+20014=44214=2217x_{1} = \frac{242 + \sqrt{40000}}{14} = \frac{242 + 200}{14} = \frac{442}{14} = \frac{221}{7} \newlinex2=2424000014=24220014=4214=3x_{2} = \frac{242 - \sqrt{40000}}{14} = \frac{242 - 200}{14} = \frac{42}{14} = 3 \newlineTherefore, the values of x1=2217x_1 = \frac{221}{7} and x2=3x_2 = 3.
  9. Calculate the values of y1y_{1} and y2y_{2}: Substitute the values of x1x_{1} and x2x_{2} in y=3x2y = \frac{3 - x}{2} to find the values of y1y_{1} and y2y_{2} respectively. \newline y1=3x12=322172=2122172=20014=1007y_1 = \frac{3 - x_1}{2} = \frac{3 - \frac{221}{7}}{2} = \frac{\frac{21-221}{7}}{2} = -\frac{200}{14} = -\frac{100}{7} \newline y2=3x22=332=02=0y_2 = \frac{3 - x_2}{2} = \frac{3 - 3}{2} = \frac{0}{2} = 0 \newlineTherefore, the values of y1=1007y_1 = -\frac{100}{7} and y2=0y_2 = 0.
  10. Final Calculation: Calculate the product of y1y_{1} and y2y_{2}: \newliney1×y2=1007×0=0y_{1} \times y_{2} = -\frac{100}{7} \times 0 = 0 \newline Therefore, the product of the y1 y_{1} and y2 y_{2} is 00.

More problems from Solve polynomial equations