Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

5m^(3)-35m^(2)-3m+21

5m335m23m+21 5 m^{3}-35 m^{2}-3 m+21

Full solution

Q. 5m335m23m+21 5 m^{3}-35 m^{2}-3 m+21
  1. Write Function: To determine if the function f(x)f(x) is even, odd, or neither, we need to evaluate f(x)f(-x) and compare it to f(x)f(x). If f(x)=f(x)f(-x) = f(x), the function is even. If f(x)=f(x)f(-x) = -f(x), the function is odd. If neither condition is met, the function is neither even nor odd.\newlineFirst, let's write down the original function:\newlinef(x)=5x335x23x+21f(x) = 5x^3 - 35x^2 - 3x + 21
  2. Substitute x-x: Now, let's substitute x-x for xx in the function to find f(x)f(-x):f(x)=5(x)335(x)23(x)+21f(-x) = 5(-x)^3 - 35(-x)^2 - 3(-x) + 21
  3. Simplify f(x)f(-x): Next, we simplify f(x)f(-x) by calculating the powers of x-x:
    f(x)=5(x)335(x)23(x)+21f(-x) = 5(-x)^3 - 35(-x)^2 - 3(-x) + 21
    f(x)=5(1)3x335(1)2x2+3x+21f(-x) = 5(-1)^3x^3 - 35(-1)^2x^2 + 3x + 21
    f(x)=5x335x2+3x+21f(-x) = -5x^3 - 35x^2 + 3x + 21
  4. Compare f(x)f(-x) with f(x)f(x): Now we compare f(x)f(-x) with f(x)f(x):
    f(x)=5x335x23x+21f(x) = 5x^3 - 35x^2 - 3x + 21
    f(x)=5x335x2+3x+21f(-x) = -5x^3 - 35x^2 + 3x + 21
    We can see that f(x)f(-x) is not equal to f(x)f(x) and also not equal to f(x)-f(x), because the signs of the x3x^3 and f(x)f(x)00 terms are different.
  5. Determine Even/Odd/Neither: Since f(x)f(-x) is neither equal to f(x)f(x) nor f(x)-f(x), the function f(x)=5x335x23x+21f(x) = 5x^3 - 35x^2 - 3x + 21 is neither even nor odd.

More problems from Divide polynomials using long division