Write Function: To determine if the function f(x) is even, odd, or neither, we need to evaluate f(−x) and compare it to f(x). If f(−x)=f(x), the function is even. If f(−x)=−f(x), the function is odd. If neither condition is met, the function is neither even nor odd.First, let's write down the original function:f(x)=5x3−35x2−3x+21
Substitute −x: Now, let's substitute −x for x in the function to find f(−x):f(−x)=5(−x)3−35(−x)2−3(−x)+21
Simplify f(−x): Next, we simplify f(−x) by calculating the powers of −x: f(−x)=5(−x)3−35(−x)2−3(−x)+21 f(−x)=5(−1)3x3−35(−1)2x2+3x+21 f(−x)=−5x3−35x2+3x+21
Compare f(−x) with f(x): Now we compare f(−x) with f(x): f(x)=5x3−35x2−3x+21 f(−x)=−5x3−35x2+3x+21 We can see that f(−x) is not equal to f(x) and also not equal to −f(x), because the signs of the x3 and f(x)0 terms are different.
Determine Even/Odd/Neither: Since f(−x) is neither equal to f(x) nor −f(x), the function f(x)=5x3−35x2−3x+21 is neither even nor odd.
More problems from Divide polynomials using long division