Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

5*7^(2y)=175
Which of the following is the solution of the equation?
Choose 1 answer:
(A) 
y=log_(7)(35)
(B) 
y=(log_(35)(7))/(2)
(C) 
y=(log_(7)(35))/(2)
(D) 
y=log_(35)(7)

572y=175 5 \cdot 7^{2 y}=175 \newlineWhich of the following is the solution of the equation?\newlineChoose 11 answer:\newline(A) y=log7(35) y=\log _{7}(35) \newline(B) y=log35(7)2 y=\frac{\log _{35}(7)}{2} \newline(C) y=log7(35)2 y=\frac{\log _{7}(35)}{2} \newline(D) y=log35(7) y=\log _{35}(7)

Full solution

Q. 572y=175 5 \cdot 7^{2 y}=175 \newlineWhich of the following is the solution of the equation?\newlineChoose 11 answer:\newline(A) y=log7(35) y=\log _{7}(35) \newline(B) y=log35(7)2 y=\frac{\log _{35}(7)}{2} \newline(C) y=log7(35)2 y=\frac{\log _{7}(35)}{2} \newline(D) y=log35(7) y=\log _{35}(7)
  1. Divide by 55: Divide both sides of the equation by 55 to isolate the term with the variable yy.\newlineCalculation: 572y=17572y=175572y=355\cdot7^{2y} = 175 \Rightarrow 7^{2y} = \frac{175}{5} \Rightarrow 7^{2y} = 35
  2. Apply logarithm: Apply the logarithm with base 77 to both sides of the equation to solve for yy.\newlineCalculation: log7(72y)=log7(35)\log_7(7^{2y}) = \log_7(35)
  3. Simplify left side: Use the property of logarithms that logb(bx)=x\log_b(b^x) = x to simplify the left side of the equation.\newlineCalculation: 2y=log7(35)2y = \log_7(35)
  4. Divide by 22: Divide both sides of the equation by 22 to solve for yy.\newlineCalculation: y=log7(35)2y = \frac{\log_7(35)}{2}

More problems from Product property of logarithms