Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
5
⋅
7
2
y
=
175
5 \cdot 7^{2 y}=175
5
⋅
7
2
y
=
175
\newline
Which of the following is the solution of the equation?
\newline
Choose
1
1
1
answer:
\newline
(A)
y
=
log
7
(
35
)
y=\log _{7}(35)
y
=
lo
g
7
(
35
)
\newline
(B)
y
=
log
35
(
7
)
2
y=\frac{\log _{35}(7)}{2}
y
=
2
l
o
g
35
(
7
)
\newline
(C)
y
=
log
7
(
35
)
2
y=\frac{\log _{7}(35)}{2}
y
=
2
l
o
g
7
(
35
)
\newline
(D)
y
=
log
35
(
7
)
y=\log _{35}(7)
y
=
lo
g
35
(
7
)
View step-by-step help
Home
Math Problems
Algebra 2
Product property of logarithms
Full solution
Q.
5
⋅
7
2
y
=
175
5 \cdot 7^{2 y}=175
5
⋅
7
2
y
=
175
\newline
Which of the following is the solution of the equation?
\newline
Choose
1
1
1
answer:
\newline
(A)
y
=
log
7
(
35
)
y=\log _{7}(35)
y
=
lo
g
7
(
35
)
\newline
(B)
y
=
log
35
(
7
)
2
y=\frac{\log _{35}(7)}{2}
y
=
2
l
o
g
35
(
7
)
\newline
(C)
y
=
log
7
(
35
)
2
y=\frac{\log _{7}(35)}{2}
y
=
2
l
o
g
7
(
35
)
\newline
(D)
y
=
log
35
(
7
)
y=\log _{35}(7)
y
=
lo
g
35
(
7
)
Divide by
5
5
5
:
Divide both sides of the equation by
5
5
5
to isolate the term with the variable
y
y
y
.
\newline
Calculation:
5
⋅
7
2
y
=
175
⇒
7
2
y
=
175
5
⇒
7
2
y
=
35
5\cdot7^{2y} = 175 \Rightarrow 7^{2y} = \frac{175}{5} \Rightarrow 7^{2y} = 35
5
⋅
7
2
y
=
175
⇒
7
2
y
=
5
175
⇒
7
2
y
=
35
Apply logarithm:
Apply the logarithm with base
7
7
7
to both sides of the equation to solve for
y
y
y
.
\newline
Calculation:
log
7
(
7
2
y
)
=
log
7
(
35
)
\log_7(7^{2y}) = \log_7(35)
lo
g
7
(
7
2
y
)
=
lo
g
7
(
35
)
Simplify left side:
Use the property of logarithms that
log
b
(
b
x
)
=
x
\log_b(b^x) = x
lo
g
b
(
b
x
)
=
x
to simplify the left side of the equation.
\newline
Calculation:
2
y
=
log
7
(
35
)
2y = \log_7(35)
2
y
=
lo
g
7
(
35
)
Divide by
2
2
2
:
Divide both sides of the equation by
2
2
2
to solve for
y
y
y
.
\newline
Calculation:
y
=
log
7
(
35
)
2
y = \frac{\log_7(35)}{2}
y
=
2
l
o
g
7
(
35
)
More problems from Product property of logarithms
Question
Convert the exponential equation in logarithmic form.
\newline
9
3
=
729
9^3 = 729
9
3
=
729
Get tutor help
Posted 6 months ago
Question
Convert the exponential equation in logarithmic form.
\newline
e
4
≈
54.598
e^4 \approx 54.598
e
4
≈
54.598
Get tutor help
Posted 6 months ago
Question
Write the logarithmic equation in exponential form.
\newline
log
10
100
=
2
\log_{10}100 = 2
lo
g
10
100
=
2
\newline
1
0
2
=
‾
10^2 = \underline{\hspace{2em}}
1
0
2
=
Get tutor help
Posted 10 months ago
Question
Evaluate. Write your answer as a whole number, proper fraction, or improper fraction in simplest form.
\newline
ln
(
e
)
10
=
\frac{\ln (e)}{10} =
10
l
n
(
e
)
=
______
Get tutor help
Posted 6 months ago
Question
Rewrite as a quotient of two common logarithms. Write your answer in simplest form.
\newline
log
3
33
=
\log_3 33 =
lo
g
3
33
=
______
Get tutor help
Posted 10 months ago
Question
Evaluate. Round your answer to the nearest thousandth.
\newline
log
5
50
=
\log_{5}50 =
lo
g
5
50
=
____
Get tutor help
Posted 10 months ago
Question
Which property of logarithms does this equation demonstrate?
\newline
log
3
3
+
log
3
6
=
log
3
18
\log_3 3 + \log_3 6 = \log_3 18
lo
g
3
3
+
lo
g
3
6
=
lo
g
3
18
\newline
Choices:
\newline
(A)
Product Property
\text{Product Property}
Product Property
\newline
(B)
Power Property
\text{Power Property}
Power Property
\newline
(C)
Quotient Property
\text{Quotient Property}
Quotient Property
Get tutor help
Posted 6 months ago
Question
Expand the logarithm. Assume all expressions exist and are well-defined.
\newline
Write your answer as a sum or difference of common logarithms or multiples of common logarithms. The inside of each logarithm must be a distinct constant or variable.
\newline
log
(
u
v
)
\log(uv)
lo
g
(
uv
)
\newline
_____
Get tutor help
Posted 10 months ago
Question
Expand the logarithm. Assume all expressions exist and are well-defined.
\newline
Write your answer as a sum or difference of common logarithms or multiples of common logarithms. The inside of each logarithm must be a distinct constant or variable.
\newline
log
v
7
\log v^7
lo
g
v
7
\newline
______
Get tutor help
Posted 10 months ago
Question
Expand the logarithm. Assume all expressions exist and are well-defined.
\newline
Write your answer as a sum or difference of base-
6
6
6
logarithms or multiples of base-
6
6
6
logarithms. The inside of each logarithm must be a distinct constant or variable.
\newline
log
6
w
6
\log_6 w^6
lo
g
6
w
6
\newline
______
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant