Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

4v^(2)-8v-145=-5

4v28v145=5 4 v^{2}-8 v-145=-5

Full solution

Q. 4v28v145=5 4 v^{2}-8 v-145=-5
  1. Add 55 to both sides: Add 55 to both sides of the equation to set it equal to zero.\newline4v28v145=54v^2 - 8v - 145 = -5\newline4v28v145+5=5+54v^2 - 8v - 145 + 5 = -5 + 5\newline4v28v140=04v^2 - 8v - 140 = 0
  2. Factor the quadratic equation: Factor the quadratic equation.\newlineTo factor 4v28v1404v^2 - 8v - 140, we need to find two numbers that multiply to 4×140=5604 \times -140 = -560 and add to 8-8. \newlineHowever, this quadratic does not factor nicely, so we will use the quadratic formula instead.\newlineThe quadratic formula is v=b±b24ac2av = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=4a = 4, b=8b = -8, and c=140c = -140.
  3. Calculate the discriminant: Calculate the discriminant b24acb^2 - 4ac of the quadratic formula.\newlineDiscriminant = (8)24×4×140(-8)^2 - 4 \times 4 \times -140\newlineDiscriminant = 64+224064 + 2240\newlineDiscriminant = 23042304
  4. Calculate the two solutions: Calculate the two solutions using the quadratic formula.\newlinev=(8)±23042×4v = \frac{-(-8) \pm \sqrt{2304}}{2 \times 4}\newlinev=8±23048v = \frac{8 \pm \sqrt{2304}}{8}\newlinev=8±488v = \frac{8 \pm 48}{8}
  5. Solve for the first value: Solve for the two possible values of vv.\newlineFirst solution:\newlinev=(8+48)/8v = (8 + 48) / 8\newlinev=56/8v = 56 / 8\newlinev=7v = 7
  6. Solve for the second value: Solve for the second possible value of vv.\newlineSecond solution:\newlinev=(848)/8v = (8 - 48) / 8\newlinev=40/8v = -40 / 8\newlinev=5v = -5

More problems from Add, subtract, multiply, and divide polynomials