Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

3y^(2)+5y-10=0
What are the solutions to the given equation?
Choose 1 answer:
(A) 
y=-(5)/(2)-(sqrt145)/(2) and

y=-(5)/(2)+(sqrt145)/(2)
(B) 
y=-(5)/(6)-(sqrt145)/(6) and

y=-(5)/(6)+(sqrt145)/(6)
(c) 
y=(5)/(6)-(sqrt145)/(6) and

y=(5)/(6)+(sqrt145)/(6)
(D) 
y=(5)/(2)-(sqrt145)/(2) and

y=(5)/(2)+(sqrt145)/(2)

3y2+5y10=0 3 y^{2}+5 y-10=0 \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) y=521452 y=-\frac{5}{2}-\frac{\sqrt{145}}{2} and\newliney=52+1452 y=-\frac{5}{2}+\frac{\sqrt{145}}{2} \newline(B) y=561456 y=-\frac{5}{6}-\frac{\sqrt{145}}{6} and\newliney=56+1456 y=-\frac{5}{6}+\frac{\sqrt{145}}{6} \newline(C) y=561456 y=\frac{5}{6}-\frac{\sqrt{145}}{6} and\newliney=56+1456 y=\frac{5}{6}+\frac{\sqrt{145}}{6} \newline(D) y=521452 y=\frac{5}{2}-\frac{\sqrt{145}}{2} and\newliney=52+1452 y=\frac{5}{2}+\frac{\sqrt{145}}{2}

Full solution

Q. 3y2+5y10=0 3 y^{2}+5 y-10=0 \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) y=521452 y=-\frac{5}{2}-\frac{\sqrt{145}}{2} and\newliney=52+1452 y=-\frac{5}{2}+\frac{\sqrt{145}}{2} \newline(B) y=561456 y=-\frac{5}{6}-\frac{\sqrt{145}}{6} and\newliney=56+1456 y=-\frac{5}{6}+\frac{\sqrt{145}}{6} \newline(C) y=561456 y=\frac{5}{6}-\frac{\sqrt{145}}{6} and\newliney=56+1456 y=\frac{5}{6}+\frac{\sqrt{145}}{6} \newline(D) y=521452 y=\frac{5}{2}-\frac{\sqrt{145}}{2} and\newliney=52+1452 y=\frac{5}{2}+\frac{\sqrt{145}}{2}
  1. Identify equation type and method: Identify the type of equation and the method to solve it.\newlineThe given equation is a quadratic equation in the form ay2+by+c=0ay^2 + by + c = 0, where a=3a = 3, b=5b = 5, and c=10c = -10. To solve this equation, we can use the quadratic formula y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
  2. Apply quadratic formula: Apply the quadratic formula to find the solutions for yy.\newlineUsing the quadratic formula, we have:\newliney=(5)±(5)24(3)(10)2(3)y = \frac{{-\left(5\right) \pm \sqrt{{\left(5\right)^2 - 4\left(3\right)\left(-10\right)}}}}{{2\left(3\right)}}\newliney=5±25+1206y = \frac{{-5 \pm \sqrt{25 + 120}}}{{6}}\newliney=5±1456y = \frac{{-5 \pm \sqrt{145}}}{{6}}
  3. Simplify solutions: Simplify the solutions.\newlineWe have two possible solutions based on the extpm{} sign in the quadratic formula:\newliney = (5-5 + \sqrt{145145}) / 66 and y = (5-5 - \sqrt{145145}) / 66
  4. Check solutions against options: Check the solutions against the given options.\newlineThe solutions we found match with option (B):\newliney = 561456-\frac{5}{6} - \frac{\sqrt{145}}{6} and y = 56+1456-\frac{5}{6} + \frac{\sqrt{145}}{6}

More problems from Compare linear and exponential growth