Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

3x+5y=52


2x+4y=38

3x+5y=52 3 x+5 y=52 \newline2x+4y=382 x+4 y=38

Full solution

Q. 3x+5y=52 3 x+5 y=52 \newline2x+4y=382 x+4 y=38
  1. Multiply by 1.5-1.5: Multiply the second equation by a number that will allow us to eliminate one of the variables when we subtract one equation from the other.\newlineWe can multiply the second equation by 1.5-1.5 to make the coefficients of yy in both equations opposites.\newline1.5×(2x+4y)=1.5×38-1.5 \times (2x + 4y) = -1.5 \times 38\newlineThis gives us 3x6y=57-3x - 6y = -57.
  2. Add to eliminate y: Add the new equation from Step 11 to the first equation to eliminate y.\newline(3x+5y)+(3x6y)=52+(57)(3x + 5y) + (-3x - 6y) = 52 + (-57)\newlineThis simplifies to y=5-y = -5.
  3. Solve for y: Solve for y.\newlineTo isolate y, we divide both sides by \(-1").\newline-y / \(-1 = 5-5 / 1-1")\newlineThis gives us y = \(5").
  4. Substitute and solve for xx: Substitute the value of yy back into one of the original equations to solve for xx. We can use the second equation: 2x+4y=382x + 4y = 38. Substitute y=5y = 5 into the equation: 2x+4(5)=382x + 4(5) = 38. This simplifies to 2x+20=382x + 20 = 38.
  5. Final step: Solve for xx: Solve for xx.\newlineSubtract 2020 from both sides of the equation to isolate 2x2x.\newline2x+2020=38202x + 20 - 20 = 38 - 20\newlineThis simplifies to 2x=182x = 18.\newlineNow, divide both sides by 22 to solve for xx.\newline2x2=182\frac{2x}{2} = \frac{18}{2}\newlineThis gives us x=9x = 9.