Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

3x4y=10;4x+3y=53x - 4y = 10 ; 4x + 3y = 5

Full solution

Q. 3x4y=10;4x+3y=53x - 4y = 10 ; 4x + 3y = 5
  1. Write Equations: Write down the system of equations to be solved.\newlineWe have the system of equations:\newline3x4y=103x - 4y = 10\newline4x+3y=54x + 3y = 5
  2. Eliminate y: Multiply the first equation by 44 and the second equation by 33 to eliminate yy when we add the equations together.\newlineMultiplying the first equation by 44:\newline4×(3x4y)=4×104 \times (3x - 4y) = 4 \times 10\newline12x16y=4012x - 16y = 40\newlineMultiplying the second equation by 33:\newline3×(4x+3y)=3×53 \times (4x + 3y) = 3 \times 5\newline12x+9y=1512x + 9y = 15
  3. Add Equations: Add the two new equations together to eliminate yy.(12x16y)+(12x+9y)=40+15(12x - 16y) + (12x + 9y) = 40 + 1524x7y=5524x - 7y = 55
  4. Solve for x: Solve the resulting equation for x.\newline24x=55+7y24x = 55 + 7y\newlinex=55+7y24x = \frac{55 + 7y}{24}\newlineSince we cannot simplify this further without knowing the value of yy, we will use this expression for xx in the next steps.
  5. Substitute for y: Substitute the expression for xx back into one of the original equations to solve for yy. We will use the first original equation: 3x4y=103x - 4y = 10 Substitute xx with (55+7y)/24(55 + 7y) / 24: 3×((55+7y)/24)4y=103 \times ((55 + 7y) / 24) - 4y = 10 (165+21y)/244y=10(165 + 21y) / 24 - 4y = 10
  6. Clear Fraction: Multiply through by 2424 to clear the fraction.\newline24×(165+21y24)24×4y=24×1024 \times \left(\frac{165 + 21y}{24}\right) - 24 \times 4y = 24 \times 10\newline165+21y96y=240165 + 21y - 96y = 240
  7. Solve for y: Combine like terms and solve for y.\newline16575y=240165 - 75y = 240\newline75y=240165-75y = 240 - 165\newline75y=75-75y = 75\newliney=7575y = \frac{75}{-75}\newliney=1y = -1
  8. Substitute for x: Substitute the value of yy back into the expression for xx.\newlinex=(55+7y)/24x = (55 + 7y) / 24\newlinex=(55+7(1))/24x = (55 + 7(-1)) / 24\newlinex=(557)/24x = (55 - 7) / 24\newlinex=48/24x = 48 / 24\newline$x = \(2\)