Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

3x^(2)-3x+5=0

3x23x+5=0 3 x^{2}-3 x+5=0

Full solution

Q. 3x23x+5=0 3 x^{2}-3 x+5=0
  1. Identify coefficients: Identify the coefficients of the quadratic equation.\newlineThe quadratic equation is in the form ax2+bx+c=0ax^2 + bx + c = 0. For the equation 3x23x+5=03x^2 - 3x + 5 = 0, the coefficients are:\newlinea = 33, b = 3-3, and c = 55.
  2. Check applicability: Check if the quadratic formula can be applied.\newlineThe quadratic formula is applicable for all quadratic equations of the form ax2+bx+c=0ax^2 + bx + c = 0. Since we have identified the coefficients, we can apply the quadratic formula.
  3. Apply quadratic formula: Apply the quadratic formula to find the roots.\newlineThe quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Let's calculate the discriminant b24acb^2 - 4ac first.\newlineDiscriminant = (3)24(3)(5)(-3)^2 - 4(3)(5)\newlineDiscriminant = 9609 - 60\newlineDiscriminant = 51-51
  4. Calculate discriminant: Since the discriminant is negative, the roots will be complex numbers.\newlineWe can now write the roots using the quadratic formula with the discriminant.\newlinex=(3)±512×3x = \frac{-(-3) \pm \sqrt{-51}}{2 \times 3}\newlinex=3±516x = \frac{3 \pm \sqrt{-51}}{6}
  5. Determine complex roots: Simplify the roots by separating the real and imaginary parts.\newlineSince 51\sqrt{-51} is an imaginary number, we can write it as 51i\sqrt{51}i, where ii is the imaginary unit.\newlinex=3±51i6x = \frac{3 \pm \sqrt{51}i}{6}
  6. Simplify roots: Write the final simplified form of the roots.\newlineThe roots are:\newlinex=3+51i6x = \frac{3 + \sqrt{51}i}{6} and x=351i6x = \frac{3 - \sqrt{51}i}{6}

More problems from Add, subtract, multiply, and divide polynomials