Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

3x(10+x2)=15x3x\left(\frac{10+x}{2}\right)=15x

Full solution

Q. 3x(10+x2)=15x3x\left(\frac{10+x}{2}\right)=15x
  1. Distribute 3x3x: Distribute the 3x3x across the terms inside the parentheses.\newline3x×(102)+3x×(x2)=15x3x \times (\frac{10}{2}) + 3x \times (\frac{x}{2}) = 15x
  2. Simplify multiplication: Simplify the multiplication inside the parentheses. 3x×5+3x×(12)x=15x3x \times 5 + 3x \times (\frac{1}{2})x = 15x
  3. Continue simplifying: Continue simplifying the equation. 15x+(32)x2=15x15x + \left(\frac{3}{2}\right)x^2 = 15x
  4. Subtract 15x15x: Subtract 15x15x from both sides to move all terms involving xx to one side.\newline15x+(32)x215x=15x15x15x + \left(\frac{3}{2}\right)x^2 - 15x = 15x - 15x
  5. Simplify equation: Simplify both sides of the equation.\newline(32)x2=0(\frac{3}{2})x^2 = 0
  6. Conclude x=0x=0: Since 32x2=0\frac{3}{2}x^2 = 0, we can conclude that xx must be 00 for the equation to hold true.\newlinex=0x = 0

More problems from Add and subtract polynomials