Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

2x(2x-3) >= 4x^(2)-3(2x+1)

2x(2x3)4x23(2x+1) 2 x(2 x-3) \geq 4 x^{2}-3(2 x+1)

Full solution

Q. 2x(2x3)4x23(2x+1) 2 x(2 x-3) \geq 4 x^{2}-3(2 x+1)
  1. Expand and Simplify: Expand both sides of the inequality.\newlineOn the left side, apply the distributive property to 2x(2x3)2x(2x-3).\newline2x(2x)2x(3)=4x26x2x(2x) - 2x(3) = 4x^2 - 6x\newlineOn the right side, apply the distributive property to 3(2x+1)-3(2x+1).\newline4x23(2x)3(1)=4x26x34x^2 - 3(2x) - 3(1) = 4x^2 - 6x - 3\newlineNow the inequality looks like this:\newline4x26x4x26x34x^2 - 6x \geq 4x^2 - 6x - 3
  2. Subtract to Simplify: Subtract 4x24x^2 from both sides of the inequality to simplify.\newline4x26x4x24x26x34x24x^2 - 6x - 4x^2 \geq 4x^2 - 6x - 3 - 4x^2\newlineThis simplifies to:\newline6x6x3-6x \geq -6x - 3
  3. Isolate Constant Term: Subtract 6x-6x from both sides of the inequality to isolate the constant term on one side.\newline6x+6x6x3+6x-6x + 6x \geq -6x - 3 + 6x\newlineThis simplifies to:\newline030 \geq -3
  4. Analyze Simplified Inequality: Analyze the simplified inequality.\newlineThe inequality 030 \geq -3 is always true, because 00 is always greater than or equal to 3-3.\newlineThis means that the original inequality holds for all values of xx.