Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

2theta, given 
cos theta=(-12)/(13) and 
sin theta > 0

2θ 2 \theta , given cosθ=1213 \cos \theta=\frac{-12}{13} and \sin \theta>0

Full solution

Q. 2θ 2 \theta , given cosθ=1213 \cos \theta=\frac{-12}{13} and sinθ>0 \sin \theta>0
  1. Given information: We are given that cosθ=1213\cos \theta = \frac{-12}{13} and \sin \theta > 0. We need to find the value of 2θ2\theta. To find 2θ2\theta, we first need to find the value of θ\theta. Since cosθ\cos \theta is negative and sinθ\sin \theta is positive, θ\theta must be in the second quadrant.
  2. Find θ\theta: In the second quadrant, the sine function is positive, which is consistent with the given information that \sin \theta > 0. We can use the Pythagorean identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1 to find sinθ\sin \theta. sin2θ=1cos2θ\sin^2 \theta = 1 - \cos^2 \theta sin2θ=1(1213)2\sin^2 \theta = 1 - \left(\frac{-12}{13}\right)^2
  3. Calculate sinθ\sin \theta: Calculate sin2θ\sin^2 \theta.\newlinesin2θ=1(144169)\sin^2 \theta = 1 - (\frac{144}{169})\newlinesin2θ=(169169)(144169)\sin^2 \theta = (\frac{169}{169}) - (\frac{144}{169})\newlinesin2θ=25169\sin^2 \theta = \frac{25}{169}
  4. Determine quadrant: Since sinθ\sin \theta is positive in the second quadrant, we take the positive square root of sin2θ\sin^2 \theta to find sinθ\sin \theta.\newlinesinθ=25169\sin \theta = \sqrt{\frac{25}{169}}\newlinesinθ=513\sin \theta = \frac{5}{13}
  5. Use angle addition formula: Now we have both sinθ\sin \theta and cosθ\cos \theta. We can use the angle addition formula for cosine to find cos(2θ)\cos(2\theta):cos(2θ)=cos2(θ)sin2(θ)\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)cos(2θ)=(1213)2(513)2\cos(2\theta) = \left(\frac{-12}{13}\right)^2 - \left(\frac{5}{13}\right)^2
  6. Calculate cos(2θ)\cos(2\theta): Calculate cos(2θ)\cos(2\theta).\newlinecos(2θ)=14416925169\cos(2\theta) = \frac{144}{169} - \frac{25}{169}\newlinecos(2θ)=14425169\cos(2\theta) = \frac{144 - 25}{169}\newlinecos(2θ)=119169\cos(2\theta) = \frac{119}{169}
  7. Determine quadrant for 2θ2\theta: To find 2θ2\theta, we need to determine the angle whose cosine is 119/169119/169. Since cos(2θ)\cos(2\theta) is positive, 2θ2\theta could be in the first or fourth quadrant. However, since θ\theta is in the second quadrant, 2θ2\theta must be in the first quadrant (as doubling an angle in the second quadrant would place it in the first quadrant). Therefore, we find the angle whose cosine is 119/169119/169 in the first quadrant.
  8. Use inverse cosine function: We use the inverse cosine function to find 2θ2\theta. \newline2θ=cos1(119169)2\theta = \cos^{-1}(\frac{119}{169})\newlineThis would typically require a calculator to find an approximate value, as 119169\frac{119}{169} is not a standard angle.

More problems from Evaluate expression when two complex numbers are given