Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

100*2^(4x)=15
What is the solution of the equation?
Round your answer, if necessary, to the nearest thousandth.

x~~

10024x=15 100 \cdot 2^{4 x}=15 \newlineWhat is the solution of the equation?\newlineRound your answer, if necessary, to the nearest thousandth.\newlinex x \approx

Full solution

Q. 10024x=15 100 \cdot 2^{4 x}=15 \newlineWhat is the solution of the equation?\newlineRound your answer, if necessary, to the nearest thousandth.\newlinex x \approx
  1. Isolate exponential term: First, we need to isolate the exponential term by dividing both sides of the equation by 100100.\newline10024x=15100 \cdot 2^{4x} = 15\newline24x=151002^{4x} = \frac{15}{100}\newline24x=0.152^{4x} = 0.15
  2. Apply logarithm: Now, we apply the logarithm to both sides of the equation to solve for xx. We can use the natural logarithm (ln\ln) or the common logarithm (log\log). Here, we'll use the natural logarithm for convenience.\newlineln(24x)=ln(0.15)\ln(2^{4x}) = \ln(0.15)
  3. Move exponent in front: Using the power property of logarithms, we can move the exponent in front of the logarithm. 4xln(2)=ln(0.15)4x \cdot \ln(2) = \ln(0.15)
  4. Solve for x: Next, we solve for xx by dividing both sides of the equation by 4ln(2)4\cdot\ln(2).
    x=ln(0.15)4ln(2)x = \frac{\ln(0.15)}{4 \cdot \ln(2)}
  5. Calculate x: Now, we calculate the value of x using a calculator.\newlinexln(0.15)4ln(2)x \approx \frac{\ln(0.15)}{4 \cdot \ln(2)}\newlinex1.89711998440.693147181x \approx \frac{-1.897119984}{4 \cdot 0.693147181}\newlinex1.8971199842.772588724x \approx \frac{-1.897119984}{2.772588724}\newlinex0.684x \approx -0.684

More problems from Solve exponential equations using logarithms