Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


If 
5^(2x-1)-100=25^(x-1), then the value of 
6^(x).

If 52x1100=25x15^{2x-1}-100=25^{x-1}, then the value of 6x6^{x}.

Full solution

Q. If 52x1100=25x15^{2x-1}-100=25^{x-1}, then the value of 6x6^{x}.
  1. Rewrite with Same Base: Rewrite 2525 as 525^2 to have the same base on both sides of the equation.\newline25(x1)=(52)(x1)=5(2x2)25^{(x-1)} = (5^2)^{(x-1)} = 5^{(2x-2)}.
  2. Set Equation Equal: Set the equation 52x11005^{2x-1} - 100 equal to 52x25^{2x-2}. \newline52x1100=52x2.5^{2x-1} - 100 = 5^{2x-2}.
  3. Add 100100 to Both Sides: Add 100100 to both sides to isolate the terms with the base 55.\newline5(2x1)=5(2x2)+1005^{(2x-1)} = 5^{(2x-2)} + 100.
  4. Set Exponents Equal: Since the bases are the same, set the exponents equal to each other. 2x1=2x2+1002x - 1 = 2x - 2 + 100.
  5. Subtract 2x2x: Subtract 2x2x from both sides to get the constants on one side.1=2+100-1 = -2 + 100.

More problems from Evaluate expression when a complex numbers and a variable term is given