Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[y=2x],[3x+y=20]:}
The given system of equations has solution 
(x,y). What is the value of 
x ?
Choose 1 answer:
(A) 4
(B) 5
(C) 8
(D) 20

The given system of equations has solution \newline(x,y)(x,y). What is the value of \newlinexx?\newlineChoose 11 answer:\newline(A) 4\text{(A)}\ 4\newline(B) 5\text{(B)}\ 5\newline(C) 8\text{(C)}\ 8\newline(D) 20\text{(D)}\ 20

Full solution

Q. The given system of equations has solution \newline(x,y)(x,y). What is the value of \newlinexx?\newlineChoose 11 answer:\newline(A) 4\text{(A)}\ 4\newline(B) 5\text{(B)}\ 5\newline(C) 8\text{(C)}\ 8\newline(D) 20\text{(D)}\ 20
  1. Write Equations: Write down the given system of equations.\newlineWe have the following system of equations:\newliney=2xy = 2x (Equation 11)\newline3x+y=203x + y = 20 (Equation 22)\newlineWe need to find the value of xx.
  2. Substitute yy: Substitute the value of yy from Equation 11 into Equation 22.\newlineSince y=2xy = 2x, we can replace yy in Equation 22 with 2x2x to get:\newline3x+2x=203x + 2x = 20
  3. Combine Terms: Combine like terms.\newline3x+2x=5x3x + 2x = 5x\newlineSo, the equation becomes:\newline5x=205x = 20
  4. Solve for x: Solve for x.\newlineDivide both sides of the equation by 55 to isolate x:\newline5x5=205\frac{5x}{5} = \frac{20}{5}\newlinex=4x = 4