Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[y=(1)/(5)x-9],[5y^(2)+15=7x]:}
If 
(a,b) is a solution to the system of equations shown and 
b > 0, what is the value of 
b ?

yamp;=15x95y2+15amp;=7x \begin{aligned} y & =\frac{1}{5} x-9 \\ 5 y^{2}+15 & =7 x \end{aligned} \newlineIf (a,b) (a, b) is a solution to the system of equations shown and b>0 , what is the value of b b ?

Full solution

Q. y=15x95y2+15=7x \begin{aligned} y & =\frac{1}{5} x-9 \\ 5 y^{2}+15 & =7 x \end{aligned} \newlineIf (a,b) (a, b) is a solution to the system of equations shown and b>0 b>0 , what is the value of b b ?
  1. Write Equations: Write down the system of equations.\newlineWe have the following system of equations:\newliney=15x9 y = \frac{1}{5}x - 9 \newline5y2+15=7x 5y^2 + 15 = 7x
  2. Express x in terms: Express x in terms of y from the first equation.\newlineFrom the first equation, we can solve for x:\newliney=15x9 y = \frac{1}{5}x - 9 \newliney+9=15x y + 9 = \frac{1}{5}x \newlinex=5(y+9) x = 5(y + 9)
  3. Substitute x into second: Substitute the expression for x from Step 22 into the second equation.\newlineWe substitute x=5(y+9) x = 5(y + 9) into the second equation:\newline5y2+15=7x 5y^2 + 15 = 7x \newline5y2+15=7(5(y+9)) 5y^2 + 15 = 7(5(y + 9))
  4. Simplify and solve for y: Simplify the equation and solve for y.\newline5y2+15=35(y+9) 5y^2 + 15 = 35(y + 9) \newline5y2+15=35y+315 5y^2 + 15 = 35y + 315 \newline5y235y+15315=0 5y^2 - 35y + 15 - 315 = 0 \newline5y235y300=0 5y^2 - 35y - 300 = 0
  5. Factor quadratic equation: Factor the quadratic equation.\newlineWe need to factor the quadratic equation 5y235y300=0 5y^2 - 35y - 300 = 0 . This can be done by looking for two numbers that multiply to 5×300=1500 5 \times -300 = -1500 and add up to 35-35. These numbers are 60-60 and +2525.\newline5y260y+25y300=0 5y^2 - 60y + 25y - 300 = 0 \newline5y(y12)+25(y12)=0 5y(y - 12) + 25(y - 12) = 0 \newline(5y+25)(y12)=0 (5y + 25)(y - 12) = 0
  6. Solve for y: Solve for y.\newlineSetting each factor equal to zero gives us two possible solutions for y:\newline5y+25=0 5y + 25 = 0 \newliney=5 y = -5 \newlineand\newliney12=0 y - 12 = 0 \newliney=12 y = 12
  7. Choose positive y value: Choose the value of y that satisfies the condition b > 00.\newlineSince we are given that b > 00 and b corresponds to y in our system of equations, we choose the positive value of y:\newliney=12 y = 12