Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(x+4)(2xa)=0(x+4)(2x-a)=0 if the equation has the solutions of x=4x=4 and x=(4)x=(-4) what is the value of aa?

Full solution

Q. (x+4)(2xa)=0(x+4)(2x-a)=0 if the equation has the solutions of x=4x=4 and x=(4)x=(-4) what is the value of aa?
  1. Substitute x=4x=4: Since the equation (x+4)(2xa)=0(x+4)(2x-a)=0 has the solutions x=4x=4 and x=4x=-4, we can use these solutions to find the value of aa.
  2. Isolate (8a)(8-a): First, let's substitute x=4x=4 into the equation (x+4)(2xa)=0(x+4)(2x-a)=0. This gives us (4+4)(24a)=0(4+4)(2\cdot 4-a)=0, which simplifies to 8(8a)=08(8-a)=0.
  3. Solve for aa: Since 8(8a)=08(8-a)=0, we can divide both sides by 88 to isolate (8a)(8-a). This gives us 8a=08-a=0.
  4. Check x=4x=-4: Solving the equation 8a=08-a=0 for aa gives us a=8a=8.
  5. Confirm a=8a=8: Now, let's check the second solution x=4x=-4 to ensure it is consistent with the value of aa we found.\newlineSubstitute x=4x=-4 into the equation (x+4)(2xa)=0(x+4)(2x-a)=0.\newlineThis gives us (4+4)(2(4)a)=0(-4+4)(2*(-4)-a)=0, which simplifies to 0(a8)=00*(a-8)=0.
  6. Confirm a=8a=8: Now, let's check the second solution x=4x=-4 to ensure it is consistent with the value of aa we found.\newlineSubstitute x=4x=-4 into the equation (x+4)(2xa)=0(x+4)(2x-a)=0.\newlineThis gives us (4+4)(2(4)a)=0(-4+4)(2*(-4)-a)=0, which simplifies to 0(a8)=00*(a-8)=0.Since 0(a8)=00*(a-8)=0 is true for any value of aa, it confirms that our value of a=8a=8 is correct and does not contradict the second solution x=4x=-4.

More problems from Solve quadratic inequalities