Identify Zeros: Identify the zeros of the function (x+3)3(x−1)2(x−4). Set each factor to zero: (x+3)=0 gives x=−3. (x−1)=0 gives x=1. (x−4)=0 gives x=4. Critical points: −3, 1, 4.
Determine Intervals: Determine the intervals to test based on the critical points.The critical points divide the number line into four intervals: (−∞,−3), (−3,1), (1,4), (4,∞).
Test Sign: Test the sign of (x+3)3(x−1)2(x−4) in each interval.For x < -3, choose x=−4: (−4+3)3(−4−1)2(−4−4)=(−1)3(−5)2(−8)=−1⋅25⋅(−8)=200 (positive).For -3 < x < 1, choose x=0: (0+3)3(0−1)2(0−4)=33(−1)2(−4)=27⋅1⋅(−4)=−108 (negative).For 1 < x < 4, choose x=2: (2+3)3(2−1)2(2−4)=53(1)2(−2)=125⋅1⋅(−2)=−250 (negative).For x < -30, choose x < -31: x < -32 (positive).
Combine Results: Combine the results to form the solution.(x+3)3(x−1)2(x−4)≥0 is satisfied when the expression is positive or zero.The intervals where this occurs are (−∞,−3], [1,4], and [4,∞).