Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(x+3)^(3)(x-1)^(2)(x-4) >= 0

(x+3)3(x1)2(x4)0 (x+3)^{3}(x-1)^{2}(x-4) \geq 0

Full solution

Q. (x+3)3(x1)2(x4)0 (x+3)^{3}(x-1)^{2}(x-4) \geq 0
  1. Identify Zeros: Identify the zeros of the function (x+3)3(x1)2(x4)(x+3)^3(x-1)^2(x-4). Set each factor to zero: (x+3)=0(x+3) = 0 gives x=3x = -3. (x1)=0(x-1) = 0 gives x=1x = 1. (x4)=0(x-4) = 0 gives x=4x = 4. Critical points: 3-3, 11, 44.
  2. Determine Intervals: Determine the intervals to test based on the critical points.\newlineThe critical points divide the number line into four intervals: (,3)(-\infty, -3), (3,1)(-3, 1), (1,4)(1, 4), (4,)(4, \infty).
  3. Test Sign: Test the sign of (x+3)3(x1)2(x4)(x+3)^3(x-1)^2(x-4) in each interval.\newlineFor x < -3, choose x=4x = -4: (4+3)3(41)2(44)=(1)3(5)2(8)=125(8)=200(-4+3)^3(-4-1)^2(-4-4) = (-1)^3(-5)^2(-8) = -1\cdot25\cdot(-8) = 200 (positive).\newlineFor -3 < x < 1, choose x=0x = 0: (0+3)3(01)2(04)=33(1)2(4)=271(4)=108(0+3)^3(0-1)^2(0-4) = 3^3(-1)^2(-4) = 27\cdot1\cdot(-4) = -108 (negative).\newlineFor 1 < x < 4, choose x=2x = 2: (2+3)3(21)2(24)=53(1)2(2)=1251(2)=250(2+3)^3(2-1)^2(2-4) = 5^3(1)^2(-2) = 125\cdot1\cdot(-2) = -250 (negative).\newlineFor x < -300, choose x < -311: x < -322 (positive).
  4. Combine Results: Combine the results to form the solution.\newline(x+3)3(x1)2(x4)0(x+3)^3(x-1)^2(x-4) \geq 0 is satisfied when the expression is positive or zero.\newlineThe intervals where this occurs are (,3](-\infty, -3], [1,4][1, 4], and [4,)[4, \infty).

More problems from Solve quadratic inequalities