Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(x^(2)-3x-40)/(x^(2)+8x-20)÷(x^(2)+13 x+40)/(x^(2)+12 x+20)

x23x40x2+8x20÷x2+13x+40x2+12x+20 \frac{x^{2}-3 x-40}{x^{2}+8 x-20} \div \frac{x^{2}+13 x+40}{x^{2}+12 x+20}

Full solution

Q. x23x40x2+8x20÷x2+13x+40x2+12x+20 \frac{x^{2}-3 x-40}{x^{2}+8 x-20} \div \frac{x^{2}+13 x+40}{x^{2}+12 x+20}
  1. Factor Numerators: First, we need to factor the numerators and denominators of both fractions if possible.\newlineLet's start with the numerator of the first fraction: x23x40x^2-3x-40.\newlineWe look for two numbers that multiply to 40-40 and add to 3-3. These numbers are 8-8 and 55.\newlineSo, x23x40x^2-3x-40 factors to (x8)(x+5)(x-8)(x+5).
  2. Factor Denominators: Now, let's factor the denominator of the first fraction: x2+8x20x^2+8x-20.\newlineWe look for two numbers that multiply to 20-20 and add to 88. These numbers are 1010 and 2-2.\newlineSo, x2+8x20x^2+8x-20 factors to (x+10)(x2)(x+10)(x-2).
  3. Factor Second Fraction: Next, we factor the numerator of the second fraction: x2+13x+40x^2+13x+40.\newlineWe look for two numbers that multiply to 4040 and add to 1313. These numbers are 88 and 55.\newlineSo, x2+13x+40x^2+13x+40 factors to (x+8)(x+5)(x+8)(x+5).
  4. Factor Second Denominator: Finally, we factor the denominator of the second fraction: x2+12x+20x^2+12x+20.\newlineWe look for two numbers that multiply to 2020 and add to 1212. These numbers are 1010 and 22.\newlineSo, x2+12x+20x^2+12x+20 factors to (x+10)(x+2)(x+10)(x+2).
  5. Rewrite Original Expression: Now we rewrite the original expression with the factored forms:\newline(x8)(x+5)(x+10)(x2)÷(x+8)(x+5)(x+10)(x+2)\frac{(x-8)(x+5)}{(x+10)(x-2)} ÷ \frac{(x+8)(x+5)}{(x+10)(x+2)}
  6. Reciprocal and Multiply: Recall that dividing by a fraction is the same as multiplying by its reciprocal. So we take the reciprocal of the second fraction and multiply:\newline(x8)(x+5)(x+10)(x2)×(x+10)(x+2)(x+8)(x+5)\frac{(x-8)(x+5)}{(x+10)(x-2)} \times \frac{(x+10)(x+2)}{(x+8)(x+5)}
  7. Cancel Common Factors: Next, we cancel out the common factors in the numerator and the denominator:\newlineThe (x+5)(x+5) terms cancel out, as do the (x+10)(x+10) terms.\newlineWe are left with:\newline(x8)(x2)×(x+2)(x+8)\frac{(x-8)}{(x-2)} \times \frac{(x+2)}{(x+8)}
  8. Multiply Remaining Factors: Now we multiply the remaining factors across the numerator and the denominator:\newline(x8)(x+2)(x2)(x+8)\frac{(x-8)(x+2)}{(x-2)(x+8)}
  9. Expand Numerator and Denominator: We can expand the numerator and the denominator to check if further simplification is possible:\newlineNumerator: (x8)(x+2)=x28x+2x16=x26x16(x-8)(x+2) = x^2 - 8x + 2x - 16 = x^2 - 6x - 16\newlineDenominator: (x2)(x+8)=x2+8x2x16=x2+6x16(x-2)(x+8) = x^2 + 8x - 2x - 16 = x^2 + 6x - 16
  10. Final Simplified Form: We see that the numerator and the denominator are not the same and cannot be simplified further. Therefore, the final simplified form of the expression is:\newlinex26x16x2+6x16\frac{x^2 - 6x - 16}{x^2 + 6x - 16}

More problems from Divide polynomials using long division