Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

" Let "y^(4)-2x=5
What is the value of 
(d^(2)y)/(dx^(2)) at the point 
(-2,1) ? Give an exact number.

 Let y42x=5 \text { Let } \mathrm{y}^{4}-2 \mathrm{x}=5 \newlineWhat is the value of d2ydx2 \frac{d^{2} y}{d x^{2}} at the point (2,1) (-2,1) ? Give an exact number.

Full solution

Q.  Let y42x=5 \text { Let } \mathrm{y}^{4}-2 \mathrm{x}=5 \newlineWhat is the value of d2ydx2 \frac{d^{2} y}{d x^{2}} at the point (2,1) (-2,1) ? Give an exact number.
  1. Implicit Differentiation: We are given the equation y42x=5y^{4} - 2x = 5. To find d2ydx2\frac{d^{2}y}{dx^{2}}, we first need to implicitly differentiate the equation with respect to xx to find dydx\frac{dy}{dx}. \newlineImplicit differentiation of y42x=5y^{4} - 2x = 5 gives us:\newline4y3dydx2=04y^{3}\frac{dy}{dx} - 2 = 0.\newlineNow, solve for dydx\frac{dy}{dx}:\newline4y3dydx=24y^{3}\frac{dy}{dx} = 2,\newlinedydx=24y3\frac{dy}{dx} = \frac{2}{4y^{3}},\newlinedydx=12y3\frac{dy}{dx} = \frac{1}{2y^{3}}.
  2. Finding (dydx):</b>Next,weneedtodifferentiate$dydx(\frac{dy}{dx}):</b> Next, we need to differentiate \$\frac{dy}{dx} with respect to xx again to find d2ydx2\frac{d^{2}y}{dx^{2}}. This requires using the chain rule since yy is a function of xx.d2ydx2=ddx[12y3]\frac{d^{2}y}{dx^{2}} = \frac{d}{dx}\left[\frac{1}{2y^{3}}\right].To differentiate this, we use the quotient rule:d2ydx2=3×(12)×y4×dydx\frac{d^{2}y}{dx^{2}} = -3 \times \left(\frac{1}{2}\right) \times y^{-4} \times \frac{dy}{dx}.
  3. Using Chain Rule: Now we need to substitute the value of dydx\frac{dy}{dx} that we found in the first step into the expression for d2ydx2\frac{d^{2}y}{dx^{2}}.
    d2ydx2=3×12×y4×12y3\frac{d^{2}y}{dx^{2}} = -3 \times \frac{1}{2} \times y^{-4} \times \frac{1}{2y^{3}},
    d2ydx2=3×12×y4×12y3\frac{d^{2}y}{dx^{2}} = -3 \times \frac{1}{2} \times y^{-4} \times \frac{1}{2y^{3}},
    d2ydx2=34y7\frac{d^{2}y}{dx^{2}} = -\frac{3}{4y^{7}}.
  4. Substitute and Evaluate: We are given the point (2,1)(-2,1) to evaluate d2ydx2\frac{d^{2}y}{dx^{2}}. We substitute y=1y = 1 into the expression for d2ydx2\frac{d^{2}y}{dx^{2}}.
    d2ydx2\frac{d^{2}y}{dx^{2}} at the point (2,1)(-2,1) is:
    d2ydx2=3417\frac{d^{2}y}{dx^{2}} = \frac{-3}{4 \cdot 1^{7}},
    d2ydx2=34\frac{d^{2}y}{dx^{2}} = \frac{-3}{4}.

More problems from Evaluate expression when two complex numbers are given