Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(iii) 
(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^(n))

(iii) 6(8)n+1+16(2)3n210(2)3n+17(8)n \frac{6(8)^{n+1}+16(2)^{3 n-2}}{10(2)^{3 n+1}-7(8)^{n}}

Full solution

Q. (iii) 6(8)n+1+16(2)3n210(2)3n+17(8)n \frac{6(8)^{n+1}+16(2)^{3 n-2}}{10(2)^{3 n+1}-7(8)^{n}}
  1. Simplify terms involving powers: First, simplify the terms involving powers of 88 and 22.
    (6(8)(n+1)=6×8×8n=48×8n,(6(8)^{(n+1)} = 6 \times 8 \times 8^n = 48 \times 8^n,
    16(2)(3n2)=16×2(3n2),16(2)^{(3n-2)} = 16 \times 2^{(3n-2)},
    10(2)(3n+1)=10×2×2(3n)=20×2(3n),10(2)^{(3n+1)} = 10 \times 2 \times 2^{(3n)} = 20 \times 2^{(3n)},
    7(8)(n)=7×8n.7(8)^{(n)} = 7 \times 8^n.
  2. Rewrite using simplified terms: Rewrite the expression using simplified terms: (488n+1623n2)/(2023n78n)(48 \cdot 8^n + 16 \cdot 2^{3n-2}) / (20 \cdot 2^{3n} - 7 \cdot 8^n).
  3. Recognize and substitute: Recognize that 8n=(23)n=23n8^n = (2^3)^n = 2^{3n} and substitute:\newline(4823n+1623n2)/(2023n723n)(48 \cdot 2^{3n} + 16 \cdot 2^{3n-2}) / (20 \cdot 2^{3n} - 7 \cdot 2^{3n}).
  4. Factor out common terms: Factor out common terms in the numerator and denominator:\newline23n2×(48×4+16)/23n×(207)2^{3n-2} \times (48 \times 4 + 16) / 2^{3n} \times (20 - 7),\newline=23n2×(192+16)/23n×13= 2^{3n-2} \times (192 + 16) / 2^{3n} \times 13,\newline=23n2×208/23n×13= 2^{3n-2} \times 208 / 2^{3n} \times 13.
  5. Reduce powers of 22: Simplify by reducing the powers of 22:\newline23n2/23n=222^{3n-2} / 2^{3n} = 2^{-2},\newline=22×208/13= 2^{-2} \times 208 / 13,\newline=208/(13×4)= 208 / (13 \times 4),\newline=208/52= 208 / 52.
  6. Perform division: Perform the division: 208/52=4208 / 52 = 4.

More problems from Add, subtract, multiply, and divide polynomials