Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[{[g(1)=4],[g(n)=g(n-1)+3.2]:}],[g(3)=◻]:}

{g(1)=4g(n)=g(n1)+3.2g(3)= \begin{array}{l}\left\{\begin{array}{l}g(1)=4 \\ g(n)=g(n-1)+3.2\end{array}\right. \\ g(3)=\square\end{array}

Full solution

Q. {g(1)=4g(n)=g(n1)+3.2g(3)= \begin{array}{l}\left\{\begin{array}{l}g(1)=4 \\ g(n)=g(n-1)+3.2\end{array}\right. \\ g(3)=\square\end{array}
  1. Understand the formula: Understand the recursive formula.\newlineThe recursive formula given is g(n)=g(n1)+3.2g(n) = g(n-1) + 3.2, which means that to find the value of g(n)g(n), we need to add 3.23.2 to the value of g(n1)g(n-1). We are also given that g(1)=4g(1) = 4.
  2. Find g(2)g(2): Find the value of g(2)g(2). Using the recursive formula, we can find g(2)g(2) by adding 3.23.2 to g(1)g(1). g(2)=g(1)+3.2g(2) = g(1) + 3.2 g(2)=4+3.2g(2) = 4 + 3.2 g(2)=7.2g(2) = 7.2
  3. Find g(3)g(3): Find the value of g(3)g(3). Now, we use the value of g(2)g(2) to find g(3)g(3) using the same recursive formula. g(3)=g(2)+3.2g(3) = g(2) + 3.2 g(3)=7.2+3.2g(3) = 7.2 + 3.2 g(3)=10.4g(3) = 10.4