Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[f(x)={[-3," for ",x < -3],[-6," for ",x=-3],[-2x-7," for ",x > -3]:}],[" Find "f(-8)]:}
Answer:

f(x)={3amp; for amp;xlt;36amp; for amp;x=32x7amp; for amp;xgt;3 Find f(8) \begin{array}{c} f(x)=\left\{\begin{array}{lll} -3 &amp; \text { for } &amp; x&lt;-3 \\ -6 &amp; \text { for } &amp; x=-3 \\ -2 x-7 &amp; \text { for } &amp; x&gt;-3 \end{array}\right. \\ \text { Find } f(-8) \end{array} \newlineAnswer:\newline

Full solution

Q. f(x)={3 for x<36 for x=32x7 for x>3 Find f(8) \begin{array}{c} f(x)=\left\{\begin{array}{lll} -3 & \text { for } & x<-3 \\ -6 & \text { for } & x=-3 \\ -2 x-7 & \text { for } & x>-3 \end{array}\right. \\ \text { Find } f(-8) \end{array} \newlineAnswer:\newline
  1. Identify Function Case: To find f(8)f(-8), we need to determine which part of the piecewise function applies when x=8x = -8.\newlineThe function f(x)f(x) is defined differently for three cases: when x < -3, when x=3x = -3, and when x > -3.\newlineSince 8-8 is less than 3-3, we use the first case of the function, which is f(x)=3f(x) = -3.
  2. Calculate f(8)f(-8): Now that we have identified the correct case, we can find the value of f(8)f(-8). According to the function, f(8)=3f(-8) = -3 because 8-8 falls into the range where x < -3.