Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(dy)/(dt)=y, and 
y=1 when 
t=4.
Solve the equation.
Choose 1 answer:
(A) 
y=e^(t-4)
(B) 
y=4e^(t-1)
(C) 
y=e^(4t)
(D) 
y=4e^(t)

dydt=y \frac{d y}{d t}=y , and y=1 y=1 when t=4 t=4 .\newlineSolve the equation.\newlineChoose 11 answer:\newline(A) y=et4 y=e^{t-4} \newline(B) y=4et1 y=4 e^{t-1} \newline(C) y=e4t y=e^{4 t} \newline(D) y=4et y=4 e^{t}

Full solution

Q. dydt=y \frac{d y}{d t}=y , and y=1 y=1 when t=4 t=4 .\newlineSolve the equation.\newlineChoose 11 answer:\newline(A) y=et4 y=e^{t-4} \newline(B) y=4et1 y=4 e^{t-1} \newline(C) y=e4t y=e^{4 t} \newline(D) y=4et y=4 e^{t}
  1. Identify Differential Equation: The given differential equation is a first-order linear differential equation which can be written as: \newlinedydt=y\frac{dy}{dt} = y\newlineThis is a separable differential equation, and we can solve it by separating the variables yy and tt.
  2. Separate Variables: To separate the variables, we divide both sides by yy and multiply both sides by dtdt to get:\newline(1y)dy=dt(\frac{1}{y}) dy = dt\newlineNow we can integrate both sides to find the general solution.
  3. Integrate to Find General Solution: Integrating the left side with respect to yy and the right side with respect to tt, we get:\newline(1y)dy=dt\int(\frac{1}{y}) \, dy = \int dt\newlinelny=t+C\ln|y| = t + C\newlinewhere CC is the constant of integration.
  4. Exponentiate to Solve for yy: To solve for yy, we exponentiate both sides to get rid of the natural logarithm:\newlineelny=et+Ce^{\ln|y|} = e^{t + C}\newliney=eteCy = e^t \cdot e^C\newlineSince eCe^C is just another constant, we can rename it as CC':\newliney=Cety = C'e^t
  5. Apply Initial Condition: Now we use the initial condition y=1y=1 when t=4t=4 to find the specific value of CC':\newline1=Ce41 = C'e^{4}\newlineC=1e4C' = \frac{1}{e^{4}}
  6. Find Particular Solution: Substitute CC' back into the general solution to get the particular solution:\newliney=(1/e4)ety = (1/e^4)e^t\newliney=et4y = e^{t-4}\newlineThis matches answer choice (A)(A).

More problems from Composition of linear and quadratic functions: find an equation