Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

∬_(D)(2x+y)dxdy,D:x+y=3;y=0;x=0

D(2x+y)dxdy,D:x+y=3;y=0;x=0 \iint_{D}(2 x+y) d x d y, D: x+y=3 ; y=0 ; x=0

Full solution

Q. D(2x+y)dxdy,D:x+y=3;y=0;x=0 \iint_{D}(2 x+y) d x d y, D: x+y=3 ; y=0 ; x=0
  1. Determine region D: Determine the region D for integration.\newlineThe region D is bounded by the lines x+y=3x+y=3, y=0y=0, and x=0x=0. This forms a right triangle in the first quadrant with vertices at (0,0)(0,0), (3,0)(3,0), and (0,3)(0,3).
  2. Set up double integral: Set up the double integral. Since yy ranges from 00 to 33 (from the line y=0y=0 to the line x+y=3x+y=3 where x=0x=0), and xx ranges from 00 to 3y3-y (from x=0x=0 to x+y=3x+y=3), the integral is set up as: 0011.
  3. Integrate with respect to x: Integrate with respect to x. x=03y(2x+y)dx=[x2+yx]x=03y\int_{x=0}^{3-y} (2x+y) \, dx = [x^2 + yx]_{x=0}^{3-y} = [(3y)2+y(3y)][0+0][(3-y)^2 + y(3-y)] - [0 + 0] = (3y)2+3yy2(3-y)^2 + 3y - y^2.
  4. Simplify expression: Simplify the expression.\newline(3y)2+3yy2=96y+y2+3yy2(3-y)^2 + 3y - y^2 = 9 - 6y + y^2 + 3y - y^2\newline=93y.= 9 - 3y.

More problems from Find limits involving trigonometric functions