Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[D=[[2,0],[4,1]]" and "],[C=[[2,4,4],[4,2,4]]]:}
Let 
H=DC. Find 
H.

H=[]

D=[2amp;04amp;1] and C=[2amp;4amp;44amp;2amp;4] \begin{array}{l} \mathrm{D}=\left[\begin{array}{ll} 2 & 0 \\ 4 & 1 \end{array}\right] \text { and } \mathrm{C}=\left[\begin{array}{lll} 2 & 4 & 4 \\ 4 & 2 & 4 \end{array}\right] \end{array} \newlineLet H=DC \mathrm{H}=\mathrm{DC} . Find H \mathrm{H} .\newlineH= \mathbf{H}=

Full solution

Q. D=[2041] and C=[244424] \begin{array}{l} \mathrm{D}=\left[\begin{array}{ll} 2 & 0 \\ 4 & 1 \end{array}\right] \text { and } \mathrm{C}=\left[\begin{array}{lll} 2 & 4 & 4 \\ 4 & 2 & 4 \end{array}\right] \end{array} \newlineLet H=DC \mathrm{H}=\mathrm{DC} . Find H \mathrm{H} .\newlineH= \mathbf{H}=
  1. Define Matrices D and C: Define the matrices D and C.\newlineMatrix D is a 22x22 matrix given by:\newlineD = \left[\begin{array}{cc}\(\newline2 & 0 (\newline\)4 & 1\newline\end{array}\right]\)\newlineMatrix C is a 22x33 matrix given by:\newlineC = \left[\begin{array}{ccc}\(\newline2 & 4 & 4 (\newline\)4 & 2 & 4\newline\end{array}\right]\)\newlineTo find the product H=DCH = DC, we need to multiply matrix D by matrix C.
  2. Verify Matrix Multiplication: Verify if the matrix multiplication is possible. Matrix multiplication is possible if the number of columns in the first matrix DD is equal to the number of rows in the second matrix CC. Matrix DD has 22 columns and matrix CC has 22 rows, so the multiplication is possible.
  3. Perform Matrix Multiplication: Perform the matrix multiplication.\newlineTo multiply the matrices, we take the dot product of the rows of the first matrix with the columns of the second matrix.\newlineH[1,1]=(2×2)+(0×4)=4+0=4H[1,1] = (2 \times 2) + (0 \times 4) = 4 + 0 = 4\newlineH[1,2]=(2×4)+(0×2)=8+0=8H[1,2] = (2 \times 4) + (0 \times 2) = 8 + 0 = 8\newlineH[1,3]=(2×4)+(0×4)=8+0=8H[1,3] = (2 \times 4) + (0 \times 4) = 8 + 0 = 8\newlineH[2,1]=(4×2)+(1×4)=8+4=12H[2,1] = (4 \times 2) + (1 \times 4) = 8 + 4 = 12\newlineH[2,2]=(4×4)+(1×2)=16+2=18H[2,2] = (4 \times 4) + (1 \times 2) = 16 + 2 = 18\newlineH[2,3]=(4×4)+(1×4)=16+4=20H[2,3] = (4 \times 4) + (1 \times 4) = 16 + 4 = 20\newlineSo the product matrix HH is:\newlineH = \left[\begin{array}{ccc}\(\newline4 & 8 & 8, (\newline\)12 & 18 & 20\newline\end{array}\right]\)

More problems from Compare linear, exponential, and quadratic growth