Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(5x214)8=x2+1(-\frac{5x}{2} -\frac{1}{4})8 = -\frac{x}{2} +1

Full solution

Q. (5x214)8=x2+1(-\frac{5x}{2} -\frac{1}{4})8 = -\frac{x}{2} +1
  1. Distribute 88 to terms: We need to distribute 88 to both terms in the parentheses on the left side of the equation.\newline(5x214)×8=x2+1(-\frac{5x}{2} - \frac{1}{4}) \times 8 = -\frac{x}{2} + 1\newlineDistribute 88 to 5x2-\frac{5x}{2} and 14-\frac{1}{4} separately.\newline(5x2)×8+(14)×8=x2+1(-\frac{5x}{2}) \times 8 + (-\frac{1}{4}) \times 8 = -\frac{x}{2} + 1
  2. Simplify multiplication: Simplify the multiplication.\newline(5x2)×8=5x×4=20x(-\frac{5x}{2}) \times 8 = -5x \times 4 = -20x\newline(14)×8=2(-\frac{1}{4}) \times 8 = -2\newlineSo, the left side of the equation becomes 20x2-20x - 2.\newline20x2=x2+1-20x - 2 = -\frac{x}{2} + 1
  3. Isolate variable x: Now we need to isolate the variable x on one side of the equation. Let's move all terms containing x to the left side and constants to the right side.\newlineAdd 20x20x to both sides and add 22 to both sides.\newline20x2+20x+2=x2+1+20x+2-20x - 2 + 20x + 2 = -\frac{x}{2} + 1 + 20x + 2
  4. Combine like terms: Simplify both sides of the equation.\newlineThe xx terms on the left side cancel each other out, and we are left with 00 on the left side.\newline0=x2+20x+30 = -\frac{x}{2} + 20x + 3
  5. Simplify xx terms: Combine like terms on the right side of the equation.\newlineSince x2-\frac{x}{2} is the same as 0.5x-0.5x, we can combine it with 20x20x.\newline0=0.5x+20x+30 = -0.5x + 20x + 3
  6. Subtract to isolate x: Simplify the x terms.\newline0.5x+20x=19.5x-0.5x + 20x = 19.5x\newline0=19.5x+30 = 19.5x + 3
  7. Simplify both sides: Subtract 33 from both sides to isolate the xx term.\newline03=19.5x+330 - 3 = 19.5x + 3 - 3
  8. Divide to solve for x: Simplify both sides of the equation.\newline3=19.5x-3 = 19.5x
  9. Find value of x: Divide both sides by 19.519.5 to solve for xx.\newline319.5=19.5x19.5-\frac{3}{19.5} = \frac{19.5x}{19.5}
  10. Find value of x: Divide both sides by 19.519.5 to solve for xx.
    319.5=19.5x19.5\frac{-3}{19.5} = \frac{19.5x}{19.5} Simplify the division to find the value of xx.
    x=319.5x = \frac{-3}{19.5}
    x=0.15384615384615385x = -0.15384615384615385

More problems from Add, subtract, multiply, and divide polynomials