Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(5w2)3(5w-2)^3

Full solution

Q. (5w2)3(5w-2)^3
  1. Recognize Expression: Recognize the expression to be expanded.\newlineWe need to expand (5w2)3(5w - 2)^3, which means we will multiply (5w2)(5w - 2) by itself three times.
  2. Begin Expansion: Begin the expansion using the binomial theorem or by multiplying two factors first.\newlineLet's multiply (5w2)(5w - 2) by (5w2)(5w - 2) to get the first part of our expansion.\newline(5w2)(5w2)=(5w)22(5w)(2)+(2)2(5w - 2)(5w - 2) = (5w)^2 - 2(5w)(2) + (2)^2\newline=25w220w+4= 25w^2 - 20w + 4
  3. Multiply First Part: Multiply the result from Step 22 by the remaining (5w2)(5w - 2) factor.\newlineNow we take our result, 25w220w+425w^2 - 20w + 4, and multiply it by (5w2)(5w - 2).\newline(25w220w+4)(5w2)(25w^2 - 20w + 4)(5w - 2)
  4. Multiply Remaining Factor: Distribute each term of (25w220w+4)(25w^2 - 20w + 4) by (5w2)(5w - 2). We will use the distributive property to multiply each term of the first binomial by each term of the second binomial. 25w2(5w)+25w2(2)20w(5w)20w(2)+4(5w)+4(2)=125w350w2100w2+40w+20w825w^2(5w) + 25w^2(-2) - 20w(5w) - 20w(-2) + 4(5w) + 4(-2) = 125w^3 - 50w^2 - 100w^2 + 40w + 20w - 8
  5. Distribute and Multiply: Combine like terms.\newlineNow we combine the terms that have the same variable to the same power.\newline125w3(50w2+100w2)+(40w+20w)8125w^3 - (50w^2 + 100w^2) + (40w + 20w) - 8\newline= 125w3150w2+60w8125w^3 - 150w^2 + 60w - 8

More problems from Add, subtract, multiply, and divide polynomials