Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(54) 
lim_(x rarr0)(cos(4x))/(cos(2x))

(5454) limx0cos(4x)cos(2x) \lim _{x \rightarrow 0} \frac{\cos (4 x)}{\cos (2 x)}

Full solution

Q. (5454) limx0cos(4x)cos(2x) \lim _{x \rightarrow 0} \frac{\cos (4 x)}{\cos (2 x)}
  1. Given Limit Expression: We are given the limit expression: \newlinelimx0(cos(4x)cos(2x))\lim_{x \to 0}\left(\frac{\cos(4x)}{\cos(2x)}\right)\newlineTo solve this limit, we will directly substitute the value of xx as 00, since cos(4x)\cos(4x) and cos(2x)\cos(2x) are continuous functions and there is no indeterminate form.
  2. Substitute x=0x = 0: Substitute x=0x = 0 into the expression: cos(40)cos(20)\frac{\cos(4\cdot 0)}{\cos(2\cdot 0)}
  3. Simplify Using cos(0)\cos(0): Simplify the expression using the fact that cos(0)=1\cos(0) = 1:cos(0)cos(0)\frac{\cos(0)}{\cos(0)}
  4. Final Simplification: Since cos(0)=1\cos(0) = 1, the expression simplifies to:\newline11\frac{1}{1}
  5. Simplify Fraction: Simplify the fraction: 11=1\frac{1}{1} = 1

More problems from Evaluate expression when two complex numbers are given